一种面向机动目标跟踪的交互式多模型算法

来源 :计算机应用与软件 | 被引量 : 3次 | 上传用户:redkind
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对在传感器可能偏差的情况下进行机动目标跟踪,提出一种新的交互式多模型算法,即IMM-TS-EV算法。该算法同时考虑传感器测量模型与目标运动模型这两类模型的多样性,以此处理传感器偏差性与目标机动情况。但由于考虑两类模型可能会造成模型过多而导致性能衰退,故结合扩展维特比(EV)算法以期望能有效缓解该问题,即新算法属于一种同时考虑两类模型的改进交互式多模型扩展维特比(IMM-EV)算法。最后以仿真结果验证了算法的有效性,能够利用多模型特点同时解决传感器的偏差性与目标的机动性所带来的匹配问题。
其他文献
对集合的相似性进行高效估计,在计算机的很多应用中都是要解决的一个核心问题。基于原始最小哈希算法,提出一种压缩二进制解决框架ES_SSE(Even Sketch for Set Similarity Estimation)来对集合间的杰卡德相似系数进行估计。对ES_SSE和b-bit进行了模型介绍,并详细描述了ES_SSE的构造原理;分析了Jaccard similarity估计所利用的理论模型基础
目标跟踪是计算机视觉的重要组成部分,其鲁棒性一直受到目标遮挡,光照变化,目标姿态变化等因素的制约。针对这个问题,提出了基于子空间联合模型的视觉跟踪算法。算法为了克服遮挡对目标跟踪的影响,采用局部动态稀疏表示进行遮挡检测,根据遮挡检测结果来修正增量子空间误差。此外,在稀疏子空间基础上计算目标模板和候选模板的相似性。在粒子滤波框架下,联合候选目标增量误差和相似性实现目标跟踪。通过在多个具有挑战性的视频