论文部分内容阅读
针对传统铁路异物检测方法中实时性不高、检测精度不够的问题,提出一种基于YOLOv3网络的高铁异物入侵的检测算法.为提高YOLOv3网络对图片特征的利用能力,利用可切换空洞卷积替代特征提取网络中的前四个3×3卷积,增加了卷积的感受野.然后为提升小物体检测精度,改进FPN结构,从YOLOv3特征提取网络中第二次下采样输出的特征图建立104×104作为第四个尺度预测.通过在高铁异物检测数据集上的实验表明,改进后的YOLOv3高铁异物检测网络在检测速度稍降的情况下,平均检测精度达到79.1%,比原网络增加4.3%.改进YOLOv3高铁异物入侵检测网络能够提升不同尺度目标的检测精度,同时相较于其他目标检测网络有更好的检测精度与实时性.