论文部分内容阅读
为解决跨数据库语音情感识别领域中实验数据集特征不匹配的问题,提出一种基于时频原子的听觉注意特征提取模型.首先,为了提取频谱特征,引入听觉注意模型对多类情感特征进行有效的探测.然后,利用选择注意机制改进了提取的语谱图特征,其中包含的显著性信息与跨库识别性能有紧密联系.再引入Chirplet时频原子,通过形成的过完备原子库提高语谱图特征的信息量.来自多个数据库的样本具有多成分分布的特征,据此所提模型中的Chirplet扩大了特征向量在时频域上的尺度.实验结果显示,相比传统特征模型,所提方法性能有显著提升.此外