论文部分内容阅读
针对传统人脸识别方法所提取的人脸信息特征较为单一,且分类算法存在局限性的问题,在多特征信息融合的基础上结合深度信念网络(DBN)对人脸进行深度训练并进行识别。首先采取对比度受限自适应均衡化对人脸图像进行预处理,从而削弱光照对人脸识别的影响;然后,将提取到的人脸图像的TPLBP纹理特征和HOG结构特征进行特征融合,得到信息互补的融合特征;最后,将降维后的融合特征作为DBN的输入,通过对DBN深度模型的参数的动态搜索确定最佳值后,基于训练好的深度信念网络实现人脸图像样本的识别。以ORL、AR和Yale-