多空间交互协同过滤推荐

来源 :计算机科学 | 被引量 : 0次 | 上传用户:ghchao0605
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大数据时代,由于信息过载,用户很难从海量数据中寻找出感兴趣的内容,个性化推荐系统的诞生极好地解决了这个问题.协同过滤算法被广泛应用于个性化推荐领域,但由于模型的限制,推荐效果未能得到进一步提升.现有的基于协同过滤模型的改进方法大多都是通过引入表示学习方法来得到更好的用户表示向量和项目表示向量,或通过改进用户项目匹配函数来提升推荐能力,但此类工作都致力于从单个交互提取用户-项目交互信息.文中提出了一种多空间交互协同过滤推荐算法,将用户向量和项目向量映射到多空间,从多角度做用户-项目交互,使用两层注意力机制聚合最终的用户表示向量和项目表示向量,以进行评分预测.在公开的真实数据集上,多空间交互协同过滤模型(MSICF)与多个基线模型进行了对比实验,MSICF模型的评估优于对比的基线方法.
其他文献
模糊测试是挖掘网络协议漏洞的重要方法之一.现有的模糊测试方法存在覆盖路径不完全、效率低下等问题.为了解决这些问题,文中提出了基于深度优先搜索的模糊测试用例生成方法,该方法将状态机转换成有向无回路图,以获得状态迁移路径,并通过提高测试用例在发送报文中的占比来提升模糊测试效率.该方法主要包括合并状态迁移、消除循环路径、搜索状态迁移路径、标记重复状态迁移和基于测试用例引导的模糊测试5个阶段.在合并状态迁移阶段,将首尾状态相同的状态迁移进行合并.在消除循环路径阶段,根据深度优先搜索判断图中的循环,并通过删除边将状