论文部分内容阅读
针对卷积神经网络在人脸识别存在的数据集比较少,容易发生过拟合的问题,提出对人脸进行局部二值模式处理,提升图像特征,再引入深度卷积生成对抗网络对局部二值化的人脸进行生成,有效扩充数据集,提升卷积神经网络的泛化能力。该人脸识别卷积神经网络模型包括3层卷积层,3层池化层,1个全连接层,1个Softmax分类回归层。仿真实验中,选取ORL人脸数据库中40人每人10张的人脸图像按8∶1∶1比例设置为训练集、验证集和测试集,并选取Yale人脸数据库中15人每人11张的人脸图像按9∶1∶1的比例设置训练集、验证集