论文部分内容阅读
提出了一种新颖的、基于独立分量分析(ICA)的复合神经网络,用于不同机械状态模式的特征提取.利用支持向量机(SVM)进行最终分类.与通常的基于经验风险最小化(ERM)原理的神经网络方法相比,基于结构风险最小化(SRM)原理的支持向量机分类方法具有更好的推广能力.而借助多个独立分量分析网络,隐藏于多通道振动观测信号中的不变特征得到有效提取,从而实现了支持向量机分类器在分类能力和推广性两者间的合理平衡.