基于双路式卷积神经网络的车辆与行人检测

来源 :西华大学学报(自然科学版) | 被引量 : 2次 | 上传用户:passiionlu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对低能见度状态下对车辆与行人的视觉特征难以提取的问题,提出一种将2路卷积神经网络融合从而实现对车辆与行人识别的方法。采用高斯背景差分法实现图像去模糊,在双路网络中分别采用不同尺寸的滤波器,调整滤波器的大小得到不同环境下图片的特征值,采用反向传播算法计算梯度。实验结果显示,与单路式卷积神经网络对比,在能见度低的环境中,该方法对车辆的辨识率提高至83. 49%,对行人的辨识率提高至87. 36%,表明在低能见度环境中,双路式卷积神经网络识别准确率高于单路式卷积神经网络。
其他文献