论文部分内容阅读
酶促反应动力学是研究酶的动力学性质的学科 ,是生物化学的重要内容 .本文拟通过使用 Mathe-matica软件对以碱性磷酸酶为催化剂 ,在一定初始反应物浓度条件下 ,不同时间及其对应的底物浓度进行线性回归 ,直线斜率即近似为初始时反应速率值 .以米氏方程为模型对多组初始底物浓度及其对应的反应速率组成的有序数组进行非线性回归 ,即得到碱性磷酸酶的 Vmax(最大反应速率 ,单位 mmol/( s· l) )与 Km(米氏常数 ,单位 mol/l)值 ,并推断出 KH2 PO4 对碱性磷酸酶的抑制作用类型 .这一方法改变传统的曲线直线化的处理过程 ,提高了实验结果的精度 .
Enzymatic reaction kinetics is a discipline to study the kinetic properties of enzymes and is an important part of biochemistry.This paper intends to use Mathe-matica software on the alkaline phosphatase as catalyst, at a certain initial concentration of reactants at different times And its corresponding substrate concentration linear regression, the slope of the line is approximately the initial value of the reaction rate.Using the Mie equation as a model for multiple sets of initial substrate concentration and the corresponding reaction rate of the array composed of non-linear regression , The Vmax of alkaline phosphatase (maximum reaction rate in mmol / (s · l)) and Km (Mie value) was obtained and the inhibitory effect of KH2PO4 on alkaline phosphatase was deduced This method changes the traditional straight line processing curve and improves the accuracy of experimental results.