论文部分内容阅读
为了更有效而准确地诊断阿尔茨海默病(Alzheimer’s disease,AD)和轻度认知障碍(Mild Cognitive Impairment, MCI),文章提出了一种基于多模态数据(MRI、PET和非成像数据CSF)的集成支持向量机来分类AD和MCI。该算法使用集成学习技术来综合利用不同模态数据之间相互作用产生的分类判别信息,并利用支持向量机进行分类。为了评价该算法的有效性,采用十折(10-fold)交叉验证策略来验证其性能,并在标准数据集ADNI上测试算法性能。实验结果表明,多模态集成支持向量