【摘 要】
:
基本粒子群优化算法对于离散的优化问题处理不佳,容易陷入局部最优。针对基本粒子群优化算法处理离散型优化问题时的缺陷,提出了一种融合可行基规则的改进型粒子群优化算法,并用该算法求解车辆路径问题。实验结果表明,该算法的优化性能和求解精度均优于其他文献算法,在求解车辆路径问题中具有较高的应用价值。
论文部分内容阅读
基本粒子群优化算法对于离散的优化问题处理不佳,容易陷入局部最优。针对基本粒子群优化算法处理离散型优化问题时的缺陷,提出了一种融合可行基规则的改进型粒子群优化算法,并用该算法求解车辆路径问题。实验结果表明,该算法的优化性能和求解精度均优于其他文献算法,在求解车辆路径问题中具有较高的应用价值。
其他文献
提出一个荧光共焦图像中神经树突棘自动分割与检测方法。该方法采用新的自适应区域生长法对神经树突棘目标进行预分割,基于种子点的路径规划算法,以计算给定点到目标点的最短路径来获取初始主骨架;通过建立最小生成树描述模型对骨架进行修剪,利用种子点间的矢量角度变化及顶点距离值对突棘进行检测提取。实验结果表明,该方法能很好地提取树突骨架,并取得了较好的突棘检测效果。
为了提高无线Mesh网络(WMN)的传输性能,提出基于有导向变异算子的进化算法GM-EA(guidedmutation EA)来优化WMN网关负载均衡问题。在已有的WMN负载均衡算法基础上,GM-EA算法通过结合粒子群优化的方法,更好地利用种群中的全局信息,在较少迭代次数下可以达到网关数量和负载均衡两方面的优化。仿真实验表明,GM-EA算法以增加执行时间为代价下得到的网关数量与比其他算法得到的结果
作为流量识别的一个重要手段,深度流检测使用的统计特征中屡屡包含包长信息。从互联网五种典型应用的平均包长入手,利用滑动窗口模型探索五种应用在平均包长概率分布上的差异。对FTP、Foxmail、WWW、迅雷、Emule五种应用的实验表明:设置相同的滑动窗口,五种应用平均包长的均值有明显区别;设置不断增大的滑动窗口,五种应用平均包长的均值稳定,标准差逐渐减小。仅用包长信息可识别该五种应用。
针对基于常用核函数的支持向量机在非线性系统参数辨识及预测方面的不足之处,构建了一种新的核函数——复高斯小波函数核函数。首先证明了新构建的核函数的正确性,即满足Mercy条件,表明其可以作为核函数;然后构建基于该核函数的支持向量机,并将该支持向量机用于非线性系统的辨识和未知部分的预测。通过与常用核函数构建的支持向量机的仿真结果进行对比,验证了该方法的正确性和有效性。
复杂场景中车辆的粘连会导致车辆的漏检,影响道路交通检测的准确度,因此必须建立可靠、实用的粘连分割机制。提出了一种基于凹性分析的分割方法:检测出感兴趣的车辆区域,根据凸包和blob分析判断粘连,若粘连,采用扫描的方法来寻求分割点(凹点),结合一系列准则选择最优分割线。该方法快速地将粘连车辆分割开,有效地解决了车辆粘连的问题。该方法不需要除了车辆形状以外的任何先验知识,具有很强的适应性。
给出0-1背包问题的数学模型,修改传统二进制编码为格雷码混合遗传算法,使用贪心算法来解决约束问题,对每个个体使用价值密度来衡量,提高了算法搜索效率,同时使用精英保留机制来加速算法收敛的速度。最后通过数值实验证明了算法的有效性。
针对标记数据不足的多标签分类问题,提出一种新的半监督Boosting算法,即基于函数梯度下降方法给出一种半监督Boosting多标签分类的框架,并将非标记数据的条件熵作为一个正则化项引入分类模型。实验结果表明,对于多标签分类问题,新的半监督Boosting算法的分类效果随着非标记数据数量的增加而显著提高,在各方面都优于传统的监督Boosting算法。
为减少网络移动中身份认证对性能的影响,提出了一种基于本地安全关联的接入认证机制。该机制通过认证消息携带地址注册信息,整合认证和绑定更新过程,采用本地移动性管理策略,通过建立本地安全关联,实现了域内切换流程本地化,保护了地址注册信息,避免了隧道嵌套。性能分析表明,该机制在实现双向认证的同时能够抵抗重放等多种攻击,相比其他方案,该机制减小了计算开销,缩短了切换时延。
应急通信系统中频谱资源在时间和空间上的动态变化,使得寻找一条稳定的公共控制信道十分困难。为此,将认知无线电技术引入应急通信系统中,建立了应急认知无线电网络模型,提出一种基于集群智能的动态信道分配算法。系统中每个节点根据检测到的可用信道信噪比和邻居节点对信道的选择情况,采用信道选择更新函数,选择公共控制信道。应急通信系统中的所有节点构成一个集群,节点进行各自的信道更新并与其他节点交互形成集群智能。各
通过分析YCbCr到RGB以及RGB到HSV之间转换的算法,提出一种YCbCr空间转换到HSV空间的快速算法。在该算法中分别使用了移位运算和查表法代替了浮点乘法运算,从而显著提高了算法在DSP上的运行速度。另外,转换时Y分量不再参与计算,从而进一步降低了运算复杂度。最后实验证明,在DSP平台上,该算法比传统算法能节省80%的计算时间,在PC平台上能节省46%的计算时间。因此,提出的算法在车牌识别、