论文部分内容阅读
联合概率数据关联算法(JointProbabilisticDataAsociation,JPDA)是密集杂波环境下一种良好的多目标数据关联跟踪算法。但是,当目标的数目增大时,关联概率计算时的计算量爆炸效应一直是一个难题。为降低计算量,有不少文献讨论了次优JPDA算法,但都是以降低关联跟踪性能为代价的。本文将从联合关联事件的构造出发,讨论关联假设事件的分层构造以达到降低计算量的目的。这里的层次可从0取值到某一L值,0层表示没有任何目标能够跟当前的观测数据关联。L层表示共有L个目标可以跟当前扫描得到的观测数据相关联。本文在关联事件的构造中,各层次的搜索具有递归性并可以独立进行,因而可以并行实现。文中还将本文的方法跟有关文献作了比较,并且给出相应的计算机仿真实验及其结果