论文部分内容阅读
研究人眼虹膜识别问题,因实际虹膜内边界并不是标准圆,引起识别精度差,影响有效的特征提取。传统利用圆模板定位的算法存在瞳孔遗留或纹理损失且定位时间长等问题,为提高虹膜定位精度,降低识别时间,提出了一种新的虹膜识别算法。首先对图像进行去除光斑等预处理,将含有虹膜图像的圆环变换为极坐标系下的矩形,在矩形坐标上以点、线检测确定虹膜轮廓,并对EMD提取纹理分布特征,根据比对距离寻找每个待测样本的K个近邻,以简单投票决策输出识别结果。基于CASIA虹膜图像库进行仿真,结果表明,识别率高达99%,并明显降低了识别