论文部分内容阅读
提出了一种采用小波变换和量子神经网络的音频数字水印算法。首先对分帧的音频信号进行小波分解,利用量子神经网络将音频信号的小波低频系数映射为数字水印;然后利用分类准确小波低频系数替换少量分类模糊的小波低频系数,提高水印检测正确率。实验结果表明,通过合理选择替换门限,可以提高算法的鲁棒性,有效抵御噪声、低通滤波、重采样、重量化等攻击。在无门限条件下,相比BP神经网络的水印检测正确率平均提高约1%。