论文部分内容阅读
针对行人在交通场景对车辆驾驶造成的影响和辅助驾驶需要对行人进行避险的问题,提出一种基于车载单目摄像机的行人危险度评估方法.基于中国城市的特色环境,将行车环境划分为三类:普通道路、人行横道和有辅警道路,对每类场景采用不同的评估方法.采用卷积神经网络,检测视频中道路上的行人、辅警、信号灯和人行道等信息;检测行人关键点并使用多目标跟踪方法,生成骨架姿态时间序列,通过LSTM(长短时记忆神经网络)分析姿态序列获得行人行为和趋势;最后综合视频信息、行人信息和场景信息,构建行人危险评估模型,实现行人危险度评估.