论文部分内容阅读
时序数据库中日志结构合并树(LSM-tree)在高写入负载或资源受限情况下的不及时的文件合并会导致LSM的C_0层数据大量堆积,从而造成近期写入数据的即席查询延迟增加。针对上述问题,提出了一种在保持面向大块数据的高效查询的基础上实现对最新写入的时序数据的低延迟查询的两阶段LSM合并框架。首先将文件的合并过程分为少量乱序文件快速合并与大量小文件合并这两个阶段,然后在每个阶段内提供多种文件合并策略,最后根据系统的查询负载进行两阶段合并的资源分配。通过在时序数据库Apache IoTDB上分别实现传统的L