论文部分内容阅读
为了提高股票价格预测的精度,针对中国石油股票价格预测问题,提出了粒子群算法(Particle Swarm Optimization,PSO)优化极限学习机(Extreme Learning Machine,ELM)的股票价格预测模型.通过粒子群算法对极限学习机的权值以及阈值参数进行优化,构建PSO-ELM预测模型,并将其用于中国石油股票价格预测.仿真实验表明,与ELM、PSO-BP、DE-ELM相比,其预测均方误差分别下降了1.84%、1.07%、0.97%,拟合优度决定系数R2为0.9743,即PSO-ELM有着较高的预测精度.为了给股票投资者更好的投资建议,对PSO-ELM模型分别进行股价短期、中期、长期的预测,结果表明PSO-ELM模型短期预测精度较高,随着时间的推移预测的精度有所下降.