论文部分内容阅读
为了提高大型零件超声波探伤过程中的缺陷辨识能力,提出一种基于概率支持向量机原理,结合经验模式分解和DS证据理论,采用多探头检测的一种超声缺陷识别模型。首先,对每个探头检测的含有缺陷的信号运用经验模式分解法提取信号特征;其次,利用支持向量机来进行缺陷识别,并采用最大后验概率策略来处理传统支持向量机的输出,得到每个探头检测到的缺陷的概率支持度;最后,采用DS证据理论得出最终的缺陷类型。结果表明,该模型克服了传统的支持向量机在处理多类问题时其硬判决输出限制后续数据处理的缺陷,同时避免了主观判断,提高了识别精度和