【摘 要】
:
The main purpose of this paper is to generalize the study of the Hecke-Rogers type series,which are the extensions of truncated theorems obtained by Andrews,Merca,Wang and Yee.Our proofs rely heavily on the theory of Bailey pairs.
【机 构】
:
School of Mathematics,Hunan University,Changsha 410082,China
论文部分内容阅读
The main purpose of this paper is to generalize the study of the Hecke-Rogers type series,which are the extensions of truncated theorems obtained by Andrews,Merca,Wang and Yee.Our proofs rely heavily on the theory of Bailey pairs.
其他文献
该文在登革热的传播模型中引入较复杂的异质性交错扩散,用于描述人群和蚊群的相互扩散现象,并探讨交错扩散对模型动力学的影响,以及根据风险阈值对稳态共存解存在性进行分析.结果 表明,风险阈值不仅与交错扩散有关,而且直接影响着模型的动力学,如果风险阈值大于1,并伴随其它条件成立,则人群和蚊群携带的病毒会共存,不利于登革热的控制.最后给出一些传染病学及模型动力学解释.
考虑了Zd中随机环境中的分枝随机游动,其中分枝机制和粒子迁移的分布律均依时间变化.对任意给定点z∈Zd,令Zn(z)表示位于该点处的n代粒子的个数.给出了Zn(z)的二阶渐近展开表达式.
Polak-Ribière-Polak (PRP)方法是经典共轭梯度法中数值表现较好的方法之一.结合Wolfe非精确线搜索准则对PRP公式进行改进,从而产生新的共轭参数,并基于新共轭参数设计新的谱参数,引入重启条件并构造新的重启方向,进而建立一个带重启步的谱共轭梯度算法.在常规假设及强Wolfe非精确线搜索步长准则下,算法具有充分下降性和全局收敛性.最后,对算法进行中大规模数值实验并与当前公认数值效果较好的同类方法进行比较,结果表明新算法是很有效的.
该文考虑一类三维逆时热传导问题的数值解法.基于有限差分时间离散,并结合伽辽金(Galerkin)方法对空间进行有限元离散,导出刚度矩阵及载荷向量,对热传导问题进行数值求解.针对反问题,利用分离变量法建立T时刻温度场与初始温度场之间的对应关系,给出了反演公式,并在一定先验假设条件下证明了反问题的局部稳定性.为克服反问题求解的不适定性,使用吉洪诺夫(Tikhonov)正则化和终值数据扰动正则化方法反演了初始温度场,通过数值实验验证了算法的有效性.
In this paper,we study the global existence of periodic solutions to an isothermal relativistic Euler system in BV space.First,we analyze some properties of the shock and rarefaction wave curves in the Riemann invariant plane.Based on these properties,we
Motivated by the result of Chen-Liu-Ru[1],we investigate the value distribution properties for the generalized Gauss maps of weakly complete harmonic surfaces immersed in Rn with ramification,which can be seen as a generalization of the results in the cas
This paper concerns the global existence of strong solutions to the 3D compress-ible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time uniform upper bounds for density are establ
In this paper,we establish a new algorithm to the non-overlapping Schwarz domain decomposition methods with changing transmission conditions for solving one di-mensional advection reaction diffusion problem.More precisely,we first describe the new algorit
In this note,we introduce and study a new kind of generalized Cesàro operator,Cμ,induced by a positive Borel measure μ on[0,1) between Dirichlet-type spaces.We char-acterize the measures μ for which Cμ is bounded (compact) from one Dirichlet-type space,Dα
The paper aims at establishing Riemann-Hilbert problems and presenting soliton solutions for nonlocal reverse-time nonlinear Schr(o)dinger (NLS) hierarchies associated with higher-order matrix spectral problems.The Sokhotski-Plemelj formula is used to tra