论文部分内容阅读
提出了一种综合颜色和纹理特征的粒子滤波人脸跟踪算法.该方法利用粒子滤波能有效处理非线性非高斯过程和融合目标人脸多种测量信息的特性,针对人脸特征对环境变化的不同鲁棒性,综合加权颜色直方图和旋转复合小波进行人脸特征描述,将颜色和纹理特征融合到粒子滤波跟踪框架中.实验结果表明了该算法的鲁棒性、精确性和灵活性,与基于单一特征的粒子滤波跟踪方法相比,该算法稳健而有效,且对现实场景下人脸的跟踪效果准确.