论文部分内容阅读
摘要:随着近年来4G、5G等通信系统的兴起,精通微波电路、系统设计以及微波仪器的熟练使用已经成为对所有电子和通信专业人才的基本要求。微波专业课程内容理论性强、新概念多且抽象,学生不易理解,而实验课就是学生将理论和实际直接联系起来的重要手段,但是以往实验课程受限于仪器设备往往流于形式,本文结合教学实践和工程经验,从实验内容设置、实验手段等方面提出建议,力争设计出符合社会需求的实验课程体系。
关键词:微波器件;实验教学;课程设计
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)14-0242-02
前言:
现代社会,微波技术已经蔓延到我们生活的各个方面。一大批商业应用,包括蜂窝电话、无线局域数据网、车载毫米波防撞雷达、通信卫星、全球定位系统(GPS)、射频识别技术、超宽频带无线通信和雷达系统等均与微波技术的发展和研究密不可分。随着微波器件的飞速发展,无线通信频段逐渐提高,技术快速更新,可以预见,将来具有丰富实践经验的微波技术人才将越来越抢手。
国内外理工院校一般都开设有电磁场、微波技术、微波电路等专业课程,但是学生在学完课程后,往往学到和记忆的只是一堆公式,理解专业知识仍旧停留于抽象层面,不能较快将理论知识应用于实践,体现在具体工作中表现为专业思维不够、实践创新能力不足。比如在2011年全国大学生电子设计竞赛中,北京航空航天大学共31支队伍参赛有21队获奖,其中选择高频类题目共有6支参赛队,仅有1组获得北京市三等奖,在未获奖的10支队伍中占据高频类题目占据50%。另外根据微波专业的特点,从业者需要具备较强的数学和电磁基础,而且很多能力必须要在实践中体会、锻炼和提高。就业市场的要求反过来对教学中的实验实践环节提出了更高要求。
一、国内外现状
国内外诸多大学针对微波专业教学实验环节展开了研究。比如美国马萨诸塞大学、佐治亚理工学院等学校上世纪80年代末期就开展了教学改革,研究主要集中在:电磁和微波类课程设置、实验改革等方面[1-2]。国内北京航空航天大学、清华大学、浙江大学、北京理工大学、哈工大等知名高校近年也开展了一系列电磁场与微波教学及实验实践方面的改革,涉及到课程体系设计、实验手段改进、采用网络虚拟教学等[3-8]。北京航空航天大学的全绍辉副教授在微波专业核心课程“微波技术”教学中设计并构建了“微波学堂”网,将课程教学、实验实践环节通过网上交流互动的形式体现出来,大大提高了學生的学习兴趣和课程教学效果[3]。但是由于微波仪器价格昂贵,组建大规模多台套的微波实验装置,对于高校来说是不现实的,所以高校实验课程往往一般是采用软件仿真,或者是频段集中在低频,而且大多是针对无源电路,缺少微波有源电路的实验课程。本文作者长期担任微波电路、电子实验任课教师,承担多项微波测量系统研制任务,结合作者多年工程经验和教学经历,力争设计符合当今社会研究热点的微波电路实验课程。
二、设计原则
1.设置合理的实验内容,提高学生的学习兴趣和思维能力。微波器件课程涉及的经典器件理论知识都是上个世纪诞生的,几十年来基本没有大的改变,而且涉及到物理、材料、数学等领域,学习起来比较枯燥,容易丧失兴趣。在课程设计中应该有意识地引入一些背景知识的介绍,通过介绍社会热点问题可以提高学生的直观理解能力和学习兴趣,同时使教学内容与时俱进,有效地将微波技术的最新发展和成果介绍给学生,比如超材料、量子力学在微波器件制造领域的应用。进一步引导、激发学生对当前热门技术领域的相关系统组成的探究兴趣,比如无线传感网络、智能家居、室内定位、NFC等热门技术,引导学生自发地去探究各种专业技术的理论原理,配以综合性、系统化的多种类的实验、实训模块。使学生带着问题,更高效、主动地进行学习与实践。
2.采用灵活实验模式,培养学生创新能力。现在很多高校设置了开放实验室,目的就是充分利用实验资源,发挥实验室的潜力与效益。其开放包括时间开放和内容开放,实验课程内容包括必修内容和选修内容,学生可以根据实际情况自由选择时间和内容来完成实验课程。并且结合各级别的电子竞赛,实验室教师和学生都可以拟定题目,由实验室提供实验条件,由学生选择时间完成。这样做有利于分层次教学,培养出具有较强实验能力的尖子学生。总之,多模式、多内容和多目标的开放实验室,会彻底改变教学实验模式,使单一的“填鸭式”教学向分层次、多元化教学发展,达到素质教育培养目的。
3.更新完善实验手段,加强互动。微波实验不同于低频、高频实验,它使用的仪器造价是一般仪器的几十倍甚至上百倍,而且对实验环境要求也高于普通实验。因此,搭建大规模、多台套的微波实验环境,对于大多数高校来说难度较大,为了开展好微波实验的教学,必须走物理实验与虚拟实验相结合的新路子。传统的物理实验就是利用有限的实验经费购置一些必要的实验仪器和器件,学生在授课老师的带领下搭设实验装置并操作仪器来完成实验。基本上通过物理实验,学生可以直观了解微波测量的特点,从而掌握微波测量的原理和常用微波仪器的使用方法。图1就是我们设计的混频器实验示意图,通过实验学生可以掌握微波信号源和频谱仪的使用,了解混频器的工作原理和关键参数。
虚拟实验就是利用计算机多媒体技术和EDA技术模拟真实的实验环境,学生可以通过软件,在计算机上的虚拟实验装置中,选择不同的参数,来完成整个实验过程。虚拟实验优点在于形象生动地增强学生感性认识,而且可以多人同时进行,时间更加灵活,并且可以实现网络实验教学。但现有的实验软件成本也不便宜,而且功能过于复杂,不太适合教学。还需要专业人士投入更多精力开发研制出更加专业规范的实验教学多媒体软件。我校全绍辉老师组织学生开发了一套Smith圆图模拟软件[9],通过这一软件能够帮助学生迅速地掌握圆图基本规律。学生开发此类软件的过程,也是对长线理论复习、整理、归纳的过程。 三、教学实践
在2014年秋季学期作者承担的本科课程《微波器件与电路》授课过程中,采用开放式实验教学,第一批实验题目提前给学生公布,涉及到常用的微波无源器件和有源器件:功分器、耦合器、混频器、VCO、放大器等等,由学生自由选择时间,提前和作者所在的微波实验室助教约定实验时间,由助教协助学生独立完成实验任务,并撰写实验报告。选取成绩良好的学生进行第二批实验,第二批实验涉及常用的微波电路,如图2,学生利用实验室提供的微波器件就搭建了一套简单的线性扫频测量雷达,可以实现测量运动速度、测量雷达目标隐身特性等功能。
一学期的教学实践表明这种实验教学模式效果良好,大大提高了学生的学习兴趣,锻炼了学生的动手能力,培养了学生的独立科研能力。
四、结论
本文在以往国内外微波专业实验课程教学改革的基础上,结合工程经验需求,设计了适合专业需求的微波器件与电路实验课程,可以满足培养微波电路和系统设计专业人才的需求,在以后的教学过程中,会进一步完善课程设置。
参考文献:
[1]Pozar D M,A modern course in microwave engineering,Education[J].IEEE Transactions on Education,1990,33(1):129-134.
[2]Hertling DR,Feeney RK,RF and micriwave design courses at Georgia Tech[J].IEEE Transactions on Education,1989,32(4):430-435.
[3]全紹辉.构建“微波技术”课网上教学和实验实践学堂[J].实验技术与管理,2012,29(12):159-164.
[4]徐兴,俞龙,王卫星.微波技术课程实验建设探索[J].中国科教创新导刊,2010,(07):167.
[5]凌丹,王蔷.电磁场与微波技术实验教学的改革[J].实验技术与管理,2010,27(9):115-126.
[6]孔德昭,卞长弘.微波专业实验教学的新举措[J].实验技术与管理,2007,24(10):131-133.
[7]谢泽明.网络教学在“微波技术与天线”课程的应用[J].电气电子教学学报,2008,30(3):113-115.
[8]赵春晖,张朝柱,赵旦峰.微波工程系列课程的体系改革与教学内容优化[J].电气电子教学学报,2008,30(2):15-18.
[9]全绍辉.微波虚拟实验在教学中的应用[J].电气电子教学学报,2005,27(3):96-98.
关键词:微波器件;实验教学;课程设计
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)14-0242-02
前言:
现代社会,微波技术已经蔓延到我们生活的各个方面。一大批商业应用,包括蜂窝电话、无线局域数据网、车载毫米波防撞雷达、通信卫星、全球定位系统(GPS)、射频识别技术、超宽频带无线通信和雷达系统等均与微波技术的发展和研究密不可分。随着微波器件的飞速发展,无线通信频段逐渐提高,技术快速更新,可以预见,将来具有丰富实践经验的微波技术人才将越来越抢手。
国内外理工院校一般都开设有电磁场、微波技术、微波电路等专业课程,但是学生在学完课程后,往往学到和记忆的只是一堆公式,理解专业知识仍旧停留于抽象层面,不能较快将理论知识应用于实践,体现在具体工作中表现为专业思维不够、实践创新能力不足。比如在2011年全国大学生电子设计竞赛中,北京航空航天大学共31支队伍参赛有21队获奖,其中选择高频类题目共有6支参赛队,仅有1组获得北京市三等奖,在未获奖的10支队伍中占据高频类题目占据50%。另外根据微波专业的特点,从业者需要具备较强的数学和电磁基础,而且很多能力必须要在实践中体会、锻炼和提高。就业市场的要求反过来对教学中的实验实践环节提出了更高要求。
一、国内外现状
国内外诸多大学针对微波专业教学实验环节展开了研究。比如美国马萨诸塞大学、佐治亚理工学院等学校上世纪80年代末期就开展了教学改革,研究主要集中在:电磁和微波类课程设置、实验改革等方面[1-2]。国内北京航空航天大学、清华大学、浙江大学、北京理工大学、哈工大等知名高校近年也开展了一系列电磁场与微波教学及实验实践方面的改革,涉及到课程体系设计、实验手段改进、采用网络虚拟教学等[3-8]。北京航空航天大学的全绍辉副教授在微波专业核心课程“微波技术”教学中设计并构建了“微波学堂”网,将课程教学、实验实践环节通过网上交流互动的形式体现出来,大大提高了學生的学习兴趣和课程教学效果[3]。但是由于微波仪器价格昂贵,组建大规模多台套的微波实验装置,对于高校来说是不现实的,所以高校实验课程往往一般是采用软件仿真,或者是频段集中在低频,而且大多是针对无源电路,缺少微波有源电路的实验课程。本文作者长期担任微波电路、电子实验任课教师,承担多项微波测量系统研制任务,结合作者多年工程经验和教学经历,力争设计符合当今社会研究热点的微波电路实验课程。
二、设计原则
1.设置合理的实验内容,提高学生的学习兴趣和思维能力。微波器件课程涉及的经典器件理论知识都是上个世纪诞生的,几十年来基本没有大的改变,而且涉及到物理、材料、数学等领域,学习起来比较枯燥,容易丧失兴趣。在课程设计中应该有意识地引入一些背景知识的介绍,通过介绍社会热点问题可以提高学生的直观理解能力和学习兴趣,同时使教学内容与时俱进,有效地将微波技术的最新发展和成果介绍给学生,比如超材料、量子力学在微波器件制造领域的应用。进一步引导、激发学生对当前热门技术领域的相关系统组成的探究兴趣,比如无线传感网络、智能家居、室内定位、NFC等热门技术,引导学生自发地去探究各种专业技术的理论原理,配以综合性、系统化的多种类的实验、实训模块。使学生带着问题,更高效、主动地进行学习与实践。
2.采用灵活实验模式,培养学生创新能力。现在很多高校设置了开放实验室,目的就是充分利用实验资源,发挥实验室的潜力与效益。其开放包括时间开放和内容开放,实验课程内容包括必修内容和选修内容,学生可以根据实际情况自由选择时间和内容来完成实验课程。并且结合各级别的电子竞赛,实验室教师和学生都可以拟定题目,由实验室提供实验条件,由学生选择时间完成。这样做有利于分层次教学,培养出具有较强实验能力的尖子学生。总之,多模式、多内容和多目标的开放实验室,会彻底改变教学实验模式,使单一的“填鸭式”教学向分层次、多元化教学发展,达到素质教育培养目的。
3.更新完善实验手段,加强互动。微波实验不同于低频、高频实验,它使用的仪器造价是一般仪器的几十倍甚至上百倍,而且对实验环境要求也高于普通实验。因此,搭建大规模、多台套的微波实验环境,对于大多数高校来说难度较大,为了开展好微波实验的教学,必须走物理实验与虚拟实验相结合的新路子。传统的物理实验就是利用有限的实验经费购置一些必要的实验仪器和器件,学生在授课老师的带领下搭设实验装置并操作仪器来完成实验。基本上通过物理实验,学生可以直观了解微波测量的特点,从而掌握微波测量的原理和常用微波仪器的使用方法。图1就是我们设计的混频器实验示意图,通过实验学生可以掌握微波信号源和频谱仪的使用,了解混频器的工作原理和关键参数。
虚拟实验就是利用计算机多媒体技术和EDA技术模拟真实的实验环境,学生可以通过软件,在计算机上的虚拟实验装置中,选择不同的参数,来完成整个实验过程。虚拟实验优点在于形象生动地增强学生感性认识,而且可以多人同时进行,时间更加灵活,并且可以实现网络实验教学。但现有的实验软件成本也不便宜,而且功能过于复杂,不太适合教学。还需要专业人士投入更多精力开发研制出更加专业规范的实验教学多媒体软件。我校全绍辉老师组织学生开发了一套Smith圆图模拟软件[9],通过这一软件能够帮助学生迅速地掌握圆图基本规律。学生开发此类软件的过程,也是对长线理论复习、整理、归纳的过程。 三、教学实践
在2014年秋季学期作者承担的本科课程《微波器件与电路》授课过程中,采用开放式实验教学,第一批实验题目提前给学生公布,涉及到常用的微波无源器件和有源器件:功分器、耦合器、混频器、VCO、放大器等等,由学生自由选择时间,提前和作者所在的微波实验室助教约定实验时间,由助教协助学生独立完成实验任务,并撰写实验报告。选取成绩良好的学生进行第二批实验,第二批实验涉及常用的微波电路,如图2,学生利用实验室提供的微波器件就搭建了一套简单的线性扫频测量雷达,可以实现测量运动速度、测量雷达目标隐身特性等功能。
一学期的教学实践表明这种实验教学模式效果良好,大大提高了学生的学习兴趣,锻炼了学生的动手能力,培养了学生的独立科研能力。
四、结论
本文在以往国内外微波专业实验课程教学改革的基础上,结合工程经验需求,设计了适合专业需求的微波器件与电路实验课程,可以满足培养微波电路和系统设计专业人才的需求,在以后的教学过程中,会进一步完善课程设置。
参考文献:
[1]Pozar D M,A modern course in microwave engineering,Education[J].IEEE Transactions on Education,1990,33(1):129-134.
[2]Hertling DR,Feeney RK,RF and micriwave design courses at Georgia Tech[J].IEEE Transactions on Education,1989,32(4):430-435.
[3]全紹辉.构建“微波技术”课网上教学和实验实践学堂[J].实验技术与管理,2012,29(12):159-164.
[4]徐兴,俞龙,王卫星.微波技术课程实验建设探索[J].中国科教创新导刊,2010,(07):167.
[5]凌丹,王蔷.电磁场与微波技术实验教学的改革[J].实验技术与管理,2010,27(9):115-126.
[6]孔德昭,卞长弘.微波专业实验教学的新举措[J].实验技术与管理,2007,24(10):131-133.
[7]谢泽明.网络教学在“微波技术与天线”课程的应用[J].电气电子教学学报,2008,30(3):113-115.
[8]赵春晖,张朝柱,赵旦峰.微波工程系列课程的体系改革与教学内容优化[J].电气电子教学学报,2008,30(2):15-18.
[9]全绍辉.微波虚拟实验在教学中的应用[J].电气电子教学学报,2005,27(3):96-98.