论文部分内容阅读
The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find precise object boundaries of moving objects. To locate moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this segmentation method is efficient.
The new MPEG-4 video coding standard enables content-based functions. In order to support the new standard, frames should be decomposed into a Video Object Planes (VOP), each VOP representing a moving object. This paper proposes an image segmentation method to separate moving objects from image sequences. The proposed method utilizes the spatial-temporal information. Spatial segmentation is applied to divide each image into connected areas and to find moving objects in image sequences, two consecutive image frames in the temporal direction are examined and a hypothesis testing is performed with Neyman-Pearson criterion. Spatial segmentation produces a spatial segmentation mask, and temporal segmentation yields a change detection mask that indicates moving objects and the background. Then spatial-temporal merging can be used to get the final results. This method has been tested on several images. Experimental results show that this se gmentation method is efficient.