论文部分内容阅读
分析了目前在垃圾邮件过滤中广泛应用的NaveBayes过滤模型(NBF),指出了期望交叉熵(ECE)特征词选取方法的不足。提出了改进的NaveBayes垃圾邮件过滤模型(A-NBF),用改进的期望交叉熵(AECE)选取垃圾邮件特征词,并在邮件分类过程中对特征词进行加权,从而提高对垃圾邮件过滤的精度。实验结果可以看出A-NBF比NBF在过滤精度方面有明显的提高。