论文部分内容阅读
边界节点法利用满足控制方程的非奇异通解作为基函数,半解析边界数值离散偏微分方程,具有精度高、收敛快、易编程等优点,是一种纯无网格配点方法。但是在求解具体问题时,随着节点数的增加,边界节点法经常得到严重病态的插值矩阵。本文利用有效条件数评价边界节点法求解Helmholtz问题线性方程组的计算稳定性;然后利用三种正则化方法处理其病态的线性方程组,并与高斯消元法比较计算精度和收敛性。通过数值实验,本文研究了有效条件数、误差和正则化方法之间的关系。