论文部分内容阅读
针对人脸识别中识别效果易受光照、姿态等因素影响和浅层学习方法不能有效提取人脸图像抽象特征的问题,提出一种结合Gabor小波与深度学习的人脸识别方法。该方法首先利用Gabor小波变换获取不同尺度和方向的人脸Gabor特征,通过下采样和受限玻尔兹曼机(RBM)对Gabor特征进行有效降维;其次将降维后的特征作为深度信念网络(DBN)的输入,并使用对比散度算法训练DBN;最后利用标签数据对DBN进行有监督微调,网络顶层附加Softmax分类器对提取后的特征进行分类。所提方法在ORL、UMIST和Yale-