论文部分内容阅读
推荐系统可有效解决海量数据中的信息过载问题,为用户推荐感兴趣的信息。用户相似度计算是一种常用的推荐算法,但传统算法仅考虑用户-物品评分之间的相似性,忽略了用户固有特征对用户喜好的影响。考虑用户特征对推荐效果的影响,本文提出一种联合用户特征相似度及用户评分相似度计算的算法,采用F1衡量指标评价推荐效果的有效性。实验结果表明改进算法能有效提高推荐效果,取得更好的用户体验。