论文部分内容阅读
分析基于样本与类中心距离设计模糊支持向量机隶属度函数的缺点,使用类内超平面代替类中心,提出基于样本到超平面距离的隶属度函数设计方法。该方法降低隶属度函数对样本集几何形状的依赖,提高模糊支持向量机的泛化能力。最后数值实验表明,与传统的支持向量机和现有的3种不同隶属度函数的模糊支持向量机相比,新隶属度函数可达到最好的分类效果而且速度快。