论文部分内容阅读
为探索水稻氮素营养的快速、无损诊断方法以及构建基于高光谱技术的水稻氮素营养状况分类识别模型。本研究以4种不同施氮水平的"中嘉早17"水稻分蘖期顶部第三完全展开叶叶片(简称顶三叶)为研究对象,测定各叶片的可见光到近红外波段(350~2500 nm)内的光谱数据,对所获取的光谱数据进行平滑处理和归一化处理,以消除噪声及量纲的影响,并采用主成分分析(PCA)的方法进行数据降维至22维,同时分别选用基于网格搜索算法、粒子群算法和遗传算法优化参数的支持向量机进行水稻氮素营养状况分类识别模型的建立