论文部分内容阅读
在新课标下,随着高考改革的深入,“导数”一章的内容日显重要,而三次函数图象的切线问题又是该章的一个难点,下面将通过一道课本习题对这个问题展开讨论.例求曲线 y=x~3+3x 在点 P(-2,-14)处的切线方程.(高中《数学》第三册(选修Ⅱ),P.114)解:∵f’(x)=3x~2+3,∴f’(-2)=15,所以切线方程为 y=15x+16.
Under the new curriculum standard, with the deepening of the reform of the college entrance examination, the content of the “derivative” chapter is becoming increasingly important, and the tangent problem of the three-time function image is a difficult point of the chapter. The following will adopt a textbook exercise to solve this problem. For example, find the tangent equation of the curve y=x~3+3x at point P(-2, -14). (Mathematics, vol. 3 (Elective II), P.114) Solution: ∵f’ ( x)=3x~2+3, ∴f’(-2)=15, so the tangent equation is y=15x+16.