论文部分内容阅读
摘要:【目的】探討在零换水条件下开展凡纳滨对虾高密度养殖的可行性,为后续推动对虾零换水高效健康养殖模式的规模化产业应用提供参考依据。【方法】采用封闭式串联养殖池系统,凡纳滨对虾虾苗放养密度690尾/m3,养殖周期91 d(13周),以生物絮团技术调控养殖水质,养殖全程不换水,定期监测与分析养殖水体主要水质指标及细菌数量的动态变化特征。【结果】经13周的零换水养殖后,凡纳滨对虾平均存活率为(83.90±2.74)%,收获规格平均为14.50±0.99 g/尾,单位水体对虾产量平均为8.39±0.48 kg/m3,饲料系数平均为1.25±0.06,养殖对虾单产平均耗水量为120.00±6.38 L/kg。从养殖第7周起,水体中生物絮团量维持在18.2~30.4 mL/L,pH基本维持在7.31~7.60,总碱度在116~224 mg/L范围内波动变化,总氨氮(TAN)浓度降低至0.45 mg/L以下并保持至试验结束,亚硝酸盐氮(NO2--N)浓度保持低于0.70 mg/L,硝酸盐氮(NO3?-N)浓度呈持续上升趋势,至试验结束时接近135.0 mg/L。养殖水体中的异养细菌和弧菌数量均呈先升高后降低的变化趋势,其中,异养细菌从第9周后一直维持在×106 CFU/mL的数量级水平,弧菌从第7周后一直维持在×102 CFU/mL的数量级水平。【结论】科学运用生物絮团技术对凡纳滨对虾养殖水质进行原位调控能实现高密度零换水的高效健康养殖,还可有效提高水资源的利用效率,有助于推动对虾养殖产业的绿色健康发展。
关键词: 凡纳滨对虾;高密度养殖;零换水;微生物调控;生物絮团
中图分类号: S966.129 文献标志码: A 文章编号:2095-1191(2019)12-2833-08
Production trial and analysis of Litopenaeus vannamei based on biofloc technology at a high density in zero-water exchange systems
FAN Peng-cheng1,2, XU Wu-jie2,3, WEN Guo-liang1,2, XU Yu2,3, XU Yun-na2, LI Zhuo-jia2, YANG Keng2, ZHANG Jian-she1, CAO Yu-cheng1,2,3*
(1Zhejiang Ocean University/National Marine Facility Breeding Engineering Technology Research Center,Zhoushan, Zhejiang 316022, China; 2South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Guangdong Key Laboratory of Fishery Ecology and Environment/Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China; 3Shenzhen
Experimental Base, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Shenzhen,Guangdong 518121, China)
Abstract:【Objective】This study discussed the feasibility of zero-water exchange for high density culture of Litopenaeus vannamei, in order to provide reference for future promotion of large-scale industrial application of the environment friendly and high effective aquaculture. 【Method】In this trial, a closed cascaded ponds system was adopted, the stocking density of L. vannamei was 690 ind/m3, and the culture period was 91 d(13 weeks). Biofloc technology was used to control the water quality of pond systems, and no water was exchanged during the whole culture period. Key water quality parameters and dynamic change of bacteria volume were regularly monitored and analyzed. 【Result】After the 13 weeks(91 d) zero-water exchange culture, the average yield was 8.39±0.48 kg/m3 with an average weight of 14.50±0.99 g/ind, and an average survival rate of (83.9±2.74)%. The feed coefficient was 1.25±0.06 and average water volume used for producing 1 kg shrimps was 120.00±6.38 L/kg. Seven weeks after the start of the trial, the bioflocs volume in the culture water was 18.2-30.4 mL/L, pH remained at 7.31-7.60, total alkali showed no obvious fluctuation regulation within the range of 116-224 mg/L. The concentrations of ammonia nitrogen(TAN) and nitrite nitrogen(NO2--N) were kept below 0.45 mg/L and 0.70 mg/L respectively till the end of the experiment. The concentration of nitrite nitrogen(NO3--N) showed an escalating trend, reaching 135.0 mg/L in the end. The quantity variation of the heterotrophic bacteria and vibrio in water increased at the initial stage and then decreased, with the former maintaining at the level of ×106 CFU/mL since the 9th week and the latter at the level of ×102 CFU/mL since the 7th week. 【Conclusion】Scientific application of biofloc technology for water quality control in situ can realize efficient and healthy aquaculture of L. vannamei in zero-water exchange systems, and meanwhile improve the utilization efficiency of water resources, thereby helping to drive the sustaina-ble development of shrimp aquaculture industry. 随着生物絮团量的增加,养殖水体pH和总碱度逐渐下降,主要是微生物的硝化效应过程所致(郑春华等,2017)。陈旭良等(2006)研究表明,以Na2CO3调节水体总碱度的效果优于NaOH。王大鹏等(2014)研究指出,加强养殖水体pH和总碱度调节有利于微生物和凡纳滨对虾的生长。为此,本研究通过添加Na2CO3溶液和生石灰水以调节水体pH和总碱度,并辅以沉淀桶将水中的生物絮团浓度数量稳定控制在15~20 mL/L,旨在为水体中的微生物和养殖对虾提供相对稳定的水质条件。邓应能等(2012)将生物絮团技术应用于凡纳滨对虾试验性封闭养殖系统中,在84 d的养殖期内养殖水体TAN和NO2?-N浓度均维持在较低水平,对虾存活率则在80%以上。索建杰等(2015)通过对比常规换水、循环水和生物絮团3种凡纳滨对虾养殖模式下其水质指标的变化规律及凡纳滨对虾的存活与生长情况,也发现以生物絮团养殖模式的效果最优。可见,在养殖水体中构建和培育以优势功能菌群为核心的水质原位调控技术,不仅能保障养殖水质满足养殖生物健康生长的需求,还可实现养殖全程零换水的目标。
3. 3 对虾零换水高效健康养殖模式的优势
对虾零换水高效健康养殖模式的优势主要表现为:(1)实现养殖全程零换水,与传统池塘养殖的大量及频繁换水相比,可有效调控养殖水质,提高水资源利用效率。(2)可有效减少养殖对虾病害暴发,提高养殖效益。由于养殖全程零换水,可避免通过换水引入外来病原的风险;且生物絮团技术可有效抑制有害病原菌的生长繁殖,部分益生菌团还能分泌特定的抑菌因子如细菌素、溶菌酶等而抑制致病微生物(Verschuere et al.,2000)。(3)提高饲料蛋白利用率,降低养殖成本。投喂的饲料一部分被养殖对虾利用,还有部分残留在水体中或通过代谢效应进入养殖环境中,生物絮团中的微生物对其碳水化合物和氮素进行转换利用,形成菌体蛋白再被养殖对虾摄食利用(Epp et al.,2002;Abreu et al.,2007),从而实现养殖环境系统中物质的高效利用,同时降低饲料系数及提高养殖综合效益。(4)水体中的生物絮团有利于增强养殖对虾的消化吸收及抗病能力(Xu and Pan,2012;Sajali et al.,2019)。Suita等(2015)对在零换水系统中的对虾肝胰腺发育及生理状态进行分析,发现与常规生产系统相比,生物絮团零换水养殖系统更有利于促进对虾肝胰腺的正常发育,进而增强其生理功能;Cardona等(2016)研究发现,生物絮团零换水养殖系统中的对虾肠道细菌群落与换水养殖系统中的存在显著差异;陈文斌等(2017)研究表明,生物絮团中的功能菌株不仅能高效降解水体TAN和NO2?-N,还可抑制部分致病弧菌的生长,显著提高对虾的生长发育、免疫防御能力及饲料利用率。
4 结论
科学运用生物絮团技术对养殖水质进行原位调控,可实现凡纳滨对虾高密度零换水的高效健康养殖,还可有效提高水资源的利用效率,有助于推动对虾养殖产业的绿色健康发展。
参考文献:
曹伏龙,夏丽华,郭治兴,冯海媛. 2015. 海水养殖污染研究进展[J]. 广东农业科学,42(22):97-105. [Cao F L,Xia L H,Guo Z X,Feng H Y. 2015. Advances in mariculture contamination[J]. Guangdong Agricultural Sciences,42(22):97-105.]
曹煜成,李卓佳,贾晓平,文国樑,李纯厚. 2006. 对虾工厂化养殖的系统结构[J]. 南方水产,2(3):72-76. [Cao Y C,Li Z J,Jia X P,Wen G L,Li C H. 2006. System configuration of industrial shrimp farming[J]. South China Fisheries Science,2(3):72-76.]
陈文斌,潘鲁青,黄飞. 2017. 对虾生物絮团中亚硝态氮降解菌分离鉴定与安全性评价[J]. 海洋湖沼通报,(3):121-129. [Chen W B,Pan L Q,Huang F. 2017. Isolation,identification and safety evaluation of efficient nitrite-N degradation strain from biofloc-based shrimp culture ponds[J]. Transactions of Oceanology and Limnology,(3):121-129.]
陳旭良,蔡靖,郑平,周尚兴,丁革胜. 2006. 硝化系统碱度特征与调控对策的研究[J]. 浙江大学学报(农业与生命科学版),32(3):318-322. [Chen X L,Cai J,Zheng P,Zhou S X,Ding G S. 2006. Alkalinity characteristics and control strategy in nitrification system[J]. Journal of Zhejiang University(Agriculture & Life Sciences),32(3):318-322.]
邓吉朋,黄建华,江世贵,李涛,杨其彬,周发林,邱丽华. 2014. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学,10(3):29-37. [Deng J P,Huang J H,Jiang S G,Li T,Yang Q B,Zhou F L,Qiu L H. 2014. Conditions for bio-floc formation and its effects on Penaeus monodon culture system[J]. South China Fishe-ries Science,10(3):29-37.] 邓应能,赵培,孙运忠,杨丛海,黄倢. 2012. 生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J]. 渔业科学进展,33(2):69-75. [Deng Y N,Zhao P,Sun Y Z,Yang C H,Huang J. 2012. Conditions for bio-floc formation and its effects in closed culture system of Litopenaeus vannamei[J]. Progress in Fishery Sciences,33(2):69-75.]
李奕雯,徐武杰. 2016. 生物絮团零换水养虾模式[J]. 海洋与渔业,(1):46-47. [Li Y W,Xu W J. 2016. Biofloc-based zero water exchange shrimp culture model[J]. Ocean and Fishery,(1):46-47.]
李晓梅,郭体环. 2017. 生物絮团对凡纳滨对虾养殖过程中氨氮和亚硝酸氮含量的影响[J]. 渔业研究,39(4):283-286. [Li X M,Guo T H. 2017. Impact of biological floc on ammonia nitrogen and nitrite nitrogen content in the process of Litopenaeus vannamei culture[J]. Journal of Fishe-ries Research,39(4):283-286.]
刘晃,张宇雷,吴凡,倪琦,徐皓. 2009. 美国工厂化循环水养殖系统研究[J]. 农业开发与装备,(5):10-13. [Liu H,Zhang Y L,Wu F,Ni Q,Xu H. 2009. Study on recircula-ting aquaculture systems in USA[J]. Agricultural Deve-lopment and Equipments,(5):10-13.]
刘鹰,杨红生,刘石林,游奎,张福绥. 2005. 封闭循环系统对虾合理养殖密度的试验研究[J]. 农业工程学报,21(6):122-125. [Liu Y,Yang H S,Liu S L,You K,Zhang F S. 2005. Experimental study on the appropriate breeding density for the production of prawn in closed-recirculating system[J]. Transactions of the Chinese Society of Agricultural Engineering,21(6):122-125.]
羅亮,徐奇友,赵志刚,祖岫杰,闫有利,缴建华. 2013. 基于生物絮团技术的碳源添加对池塘养殖水质的影响[J]. 渔业现代化,40(3):19-24. [Luo L,Xu Q Y,Zhao Z G,Zu X J,Yan Y L,Jiao J H. 2013. Effect of the adding of carbon resource on water quality of pond aquaculture in bio-flocs technology[J]. Fishery Modernization,40(3):19-24.]
孟庆武,王圣,赵玉洁,朱建峰. 2008. 我国对虾工厂化养殖的特点、发展趋势及前景[J]. 海洋开发与管理,25(3):124-127. [Meng Q W,Wang S,Zhao Y J,Zhu J F. 2008. Characteristics, development trends and prospects of industrialized shrimp farming in China[J]. Ocean Development and Management,25(3):124-127.]
宿墨. 2017. 我国水产养殖产业供给侧改革的思考——推广工厂化循环水养殖技术的机遇与动力[J]. 中国水产,(1):40-44. [Su M. 2017. Reflections on the supply-side reform of aquaculture industry in China—Opportunities and motivation for promoting industrial recycling aquaculture technology[J]. China Fisheries,(1):40-44.]
孙振,王秀华,黄倢. 2013. 一种微生物絮团的生化分析及其对凡纳滨对虾免疫力的影响[J]. 水产学报,37(3):473-480. [Sun Z,Wang X H,Huang J. 2013. The biochemical analysis of a microbial floc and its effect on the immunity of Litopenaeus vannamei[J]. Journal of Fisheries of China,37(3):473-480.]
索建杰,王玉玮,姜玉声,李晓东,司永国,刘谞,吴俊,孙娜. 2015. 三种凡纳滨对虾养殖模式的水质特征及养殖效果[J]. 水产学杂志,28(5):12-17. [Suo J J,Wang Y W,Jiang Y S,Li X D,Si Y G,Liu X,Wu J,Sun N. 2015. Characterization of water quality and growth performance of pacific white leg shrimp Litopenaeus vannamei reared in three culture systems[J]. Chinese Journal of Fis-heries,28(5):12-17.] 万国强,陈文斌,潘鲁青. 2015. 不同C/N对生物絮团形成和凡纳滨对虾生长、养殖效果的影响[J]. 齐鲁渔业,32(9):1-4. [Wan G Q,Chen W B,Pan L Q. 2015. Effects of different C/N ratios on bioflocculation and growth and culture of Litopenaeus vannamei[J]. Shandong Fisheries,32(9):1-4.]
王大鹏,何安尤,韩耀全,施军,陈晓汉. 2014. 碱度调节对凡纳滨对虾室内高密度养殖固定化微生物处理效果的影响[J]. 中国水产科学,21(2):330-339. [Wang D P,He A Y,Han Y Q,Shi J,Chen X H. 2014. Alkalinity-regula-ting effect of immobilized microorganisms on indoor high-density culture of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China,21(2):330-339.]
文国樑,曹煜成,徐煜,胡晓娟,徐武杰,李卓佳. 2015. 养殖对虾肝胰腺坏死综合症研究进展[J]. 广东农业科学,42(11):118-123. [Wen G L,Cao Y C,Xu Y,Hu X J,Xu W J,Li Z J. 2015. Review on hepatopancreas necrosis syndrome of shrimp[J]. Guangdong Agricultural Sciences,42(11):118-123.]
徐纪萍,谈小兰,钱辉仁. 2012. 凡纳滨对虾高密度零换水高产养殖技术[J]. 水产科技情报,39(1):26-29. [Xu J P,Tan X L,Qian H R. 2012. High-density aquaculture technology of Litopenaeus vannamei in the zero-water exchange system[J]. Fisheries Science & Technology Information,39(1):26-29.]
徐如卫,杨福生,俞奇力,陈菲,王亚妮. 2015. 凡纳滨对虾循环水养殖可行性研究[J]. 河北渔业,(3):25-28. [Xu R W,Yang F S,Yu Q L,Chen F,Wang Y N. 2015. Feasibility study on recirculating aquaculture of Litopenaeus vannamei[J]. Hebei Fisheries,(3):25-28.]
杨菁,倪琦,张宇雷,徐宝荣. 2010. 对虾工程化循环水养殖系统构建技术[J]. 农业工程学报,26(8):136-140. [Yang J,Ni Q,Zhang Y L,Xu B R. 2010. Construction technology on RAS for shrimp culture[J]. Transactions of the Chinese Society of Agricultural Engineering,26(8):136-140.]
張庆文,田景波,黄滨,唐贤明. 2002. 对虾封闭循环式综合养殖系统的规划设计[J]. 海洋水产研究,23(4):29-34. [Zhang Q W,Tian J B,Huang B,Tang X M. 2002. The design of experimental base of shrimp in comprehensive culturing and circulating-closed systems[J]. Marine Fishe-ries Research,23(4):29-34.]
赵大虎,潘鲁青,王超. 2014. 生物絮团对养殖环境的清洁作用及对虾生理指标的影响[J]. 海洋湖沼通报,(1):67-73. [Zhao D H,Pan L Q,Wang C. 2014. Effects of biofloc on the breeding environment cleanings and shrimp physiological indicators[J]. Transactions of Oceanology and Limnology,(1):67-73.]
郑春华,耿安锋,李金国. 2017. 碱度对生物脱氮工艺的影响及其调控[J]. 中国给水排水,33(10):34-36. [Zheng C H,Geng A F,Li J G. 2017. Role and control of alkalinity in the process for biological nitrogen removal[J]. China Water & Wastewater,33(10):34-36.]
Abreu P C,Ballester E L C,Odebrecht C,Jr W W,Cavalli R O,Graneli W,Anesio A M. 2007. Importance of biofilm as food source for shrimp(Farfantepenaeus paulensis) eva-luated by stable isotopes(δ13C and δ15N)[J]. Journal of Experimental Marine Biology and Ecology,347(1-2):88-96. Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture,176(3-4):227-235.
Avnimelech Y. 2015. Biofloc technology-A practical guide book[M]. The 3rd Edition. Baton Rouge:The World Aquaculture Society.
Azim M E,Little D C. 2008. The biofloc technology(BFT) in indoor tanks:Water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J]. Aquaculture,283(1-4):29-35.
Cao Y C,Wen G L,Li Z J,Liu X Z,Hu X J,Zhang J S,He J G. 2014. The effects of dominant microalgae species and bacterial quantity on shrimp production in final culture season[J]. Journal of Applied Phycology,26(4):1749-1757.
Cardona E,Gueguen Y,Magré K,Lorgeoux B,Piquemal D,Pierrat F,Noguier F,Saulnier D. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology,16:157.
Crab R,Avnimelech Y,Defoirdt T,Bossier P,Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture,270(1-4):1-14.
Deb S,Noori M T,Rao S P. 2017. Experimental study to eva-luate the efficacy of locally available waste carbon sources on aquaculture water quality management using biofloc technology[J]. Aquaculture International,25(6):2149-2159.
Epp M A,Ziemann D A,Schell D M. 2002. Carbon and nitrogen dynamics in zero-water exchange shrimp culture as indicated by stable isotope tracers[J]. Aquaculture Research,33(11):839-846.
Furtado P S,Campos B R,Serra F P,Klosterhoff M,Romano L A,Jr W W. 2015. Effects of nitrate toxicity in the Paci-fic white shrimp,Litopenaeus vannamei, reared with biofloc technology(BFT)[J]. Aquaculture International,23(1):315-327.
Hari B,Kurup M B,Varghese J T,Schrama J W,Verdegem M C J. 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J]. Aquaculture,252(2-4):248-263.
Maciel J C,Francisco C J,Miranda-Filho K C. 2018. Compensatory growth and feed restriction in marine shrimp production,with emphasis on biofloc technology[J]. Aquaculture International,26(1):203-212.
Rego M A S,Sabbag O J,Soares R,Peixoto S. 2017. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco,Brazil:A case study[J]. Aquaculture,469:67-71.
Reid B,Arnold C R. 1992. The intensive culture of the penaeid shrimp Penaeus vannamei boone in a recirculating raceway system[J]. Journal of the World Aquaculture Society,23(2):146-153. Sajali U S B A,Atkinson N L,Desbois A P,Little D C,Murray F J,Shinn A P. 2019. Prophylactic properties of biofloc or Nile tilapia-conditioned water against Vibrio parahaemolyticus infection of whiteleg shrimp(Penaeus vannamei)[J]. Aquaculture,498:496-502.
Suita S M,Cardozo A P,Romano L A,Abreu P C,Jr W W. 2015. Development of the hepatopancreas and quality analysis of post-larvae Pacific white shrimp Litopenaeus vannamei produced in a BFT system[J]. Aquaculture International,23(2):449-463.
Timmons M B,Ebeling J M. 2006. The role for recirculating aquaculture systems(RAS).I.[J]. Aquaculture Magazine,32(3):26-31.
Verschuere L,Rombaut G,Sorgeloos P,Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture[J]. Microbiology and Molecular Biology Reviews,64(4):655-671.
Xu W J,Pan L Q. 2012. Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture,356-357:147-152.
Xu W J,Pan L Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture,412-413:117-124.
Xu W J,Pan L Q. 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei:Evaluation of inorganic nitrogen control,biofloc composition and shrimp performance[J]. Aquaculture Research,45(11):1842-1851.
Xu W J,Pan L Q,Sun X H,Huang J. 2013. Effects of bioflocs on water quality,and survival,growth and digestive enzyme activities of Litopenaeus vannamei(Boone) in zero-water exchange culture tanks[J]. Aquaculture Research,44(7):1093-1102.
Xu W J,Morris T C,Samocha T M. 2016. Effects of C/N ratio on biofloc development,water quality,and performance of Litopenaeus vannamei juveniles in a biofloc-based,high-density,zero-exchange,outdoor tank system[J]. Aquaculture,453:169-175.
Zhao P,Huang J,Wang X H,Song X L,Yang C H,Zhang X G,Wang G C. 2012. The application of bioflocs technology in high-intensive,zero exchange farming systems of Marsupenaeus japonicas[J]. Aquaculture,354-355:97-106.
(責任编辑 兰宗宝)
关键词: 凡纳滨对虾;高密度养殖;零换水;微生物调控;生物絮团
中图分类号: S966.129 文献标志码: A 文章编号:2095-1191(2019)12-2833-08
Production trial and analysis of Litopenaeus vannamei based on biofloc technology at a high density in zero-water exchange systems
FAN Peng-cheng1,2, XU Wu-jie2,3, WEN Guo-liang1,2, XU Yu2,3, XU Yun-na2, LI Zhuo-jia2, YANG Keng2, ZHANG Jian-she1, CAO Yu-cheng1,2,3*
(1Zhejiang Ocean University/National Marine Facility Breeding Engineering Technology Research Center,Zhoushan, Zhejiang 316022, China; 2South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/ Guangdong Key Laboratory of Fishery Ecology and Environment/Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China; 3Shenzhen
Experimental Base, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Shenzhen,Guangdong 518121, China)
Abstract:【Objective】This study discussed the feasibility of zero-water exchange for high density culture of Litopenaeus vannamei, in order to provide reference for future promotion of large-scale industrial application of the environment friendly and high effective aquaculture. 【Method】In this trial, a closed cascaded ponds system was adopted, the stocking density of L. vannamei was 690 ind/m3, and the culture period was 91 d(13 weeks). Biofloc technology was used to control the water quality of pond systems, and no water was exchanged during the whole culture period. Key water quality parameters and dynamic change of bacteria volume were regularly monitored and analyzed. 【Result】After the 13 weeks(91 d) zero-water exchange culture, the average yield was 8.39±0.48 kg/m3 with an average weight of 14.50±0.99 g/ind, and an average survival rate of (83.9±2.74)%. The feed coefficient was 1.25±0.06 and average water volume used for producing 1 kg shrimps was 120.00±6.38 L/kg. Seven weeks after the start of the trial, the bioflocs volume in the culture water was 18.2-30.4 mL/L, pH remained at 7.31-7.60, total alkali showed no obvious fluctuation regulation within the range of 116-224 mg/L. The concentrations of ammonia nitrogen(TAN) and nitrite nitrogen(NO2--N) were kept below 0.45 mg/L and 0.70 mg/L respectively till the end of the experiment. The concentration of nitrite nitrogen(NO3--N) showed an escalating trend, reaching 135.0 mg/L in the end. The quantity variation of the heterotrophic bacteria and vibrio in water increased at the initial stage and then decreased, with the former maintaining at the level of ×106 CFU/mL since the 9th week and the latter at the level of ×102 CFU/mL since the 7th week. 【Conclusion】Scientific application of biofloc technology for water quality control in situ can realize efficient and healthy aquaculture of L. vannamei in zero-water exchange systems, and meanwhile improve the utilization efficiency of water resources, thereby helping to drive the sustaina-ble development of shrimp aquaculture industry. 随着生物絮团量的增加,养殖水体pH和总碱度逐渐下降,主要是微生物的硝化效应过程所致(郑春华等,2017)。陈旭良等(2006)研究表明,以Na2CO3调节水体总碱度的效果优于NaOH。王大鹏等(2014)研究指出,加强养殖水体pH和总碱度调节有利于微生物和凡纳滨对虾的生长。为此,本研究通过添加Na2CO3溶液和生石灰水以调节水体pH和总碱度,并辅以沉淀桶将水中的生物絮团浓度数量稳定控制在15~20 mL/L,旨在为水体中的微生物和养殖对虾提供相对稳定的水质条件。邓应能等(2012)将生物絮团技术应用于凡纳滨对虾试验性封闭养殖系统中,在84 d的养殖期内养殖水体TAN和NO2?-N浓度均维持在较低水平,对虾存活率则在80%以上。索建杰等(2015)通过对比常规换水、循环水和生物絮团3种凡纳滨对虾养殖模式下其水质指标的变化规律及凡纳滨对虾的存活与生长情况,也发现以生物絮团养殖模式的效果最优。可见,在养殖水体中构建和培育以优势功能菌群为核心的水质原位调控技术,不仅能保障养殖水质满足养殖生物健康生长的需求,还可实现养殖全程零换水的目标。
3. 3 对虾零换水高效健康养殖模式的优势
对虾零换水高效健康养殖模式的优势主要表现为:(1)实现养殖全程零换水,与传统池塘养殖的大量及频繁换水相比,可有效调控养殖水质,提高水资源利用效率。(2)可有效减少养殖对虾病害暴发,提高养殖效益。由于养殖全程零换水,可避免通过换水引入外来病原的风险;且生物絮团技术可有效抑制有害病原菌的生长繁殖,部分益生菌团还能分泌特定的抑菌因子如细菌素、溶菌酶等而抑制致病微生物(Verschuere et al.,2000)。(3)提高饲料蛋白利用率,降低养殖成本。投喂的饲料一部分被养殖对虾利用,还有部分残留在水体中或通过代谢效应进入养殖环境中,生物絮团中的微生物对其碳水化合物和氮素进行转换利用,形成菌体蛋白再被养殖对虾摄食利用(Epp et al.,2002;Abreu et al.,2007),从而实现养殖环境系统中物质的高效利用,同时降低饲料系数及提高养殖综合效益。(4)水体中的生物絮团有利于增强养殖对虾的消化吸收及抗病能力(Xu and Pan,2012;Sajali et al.,2019)。Suita等(2015)对在零换水系统中的对虾肝胰腺发育及生理状态进行分析,发现与常规生产系统相比,生物絮团零换水养殖系统更有利于促进对虾肝胰腺的正常发育,进而增强其生理功能;Cardona等(2016)研究发现,生物絮团零换水养殖系统中的对虾肠道细菌群落与换水养殖系统中的存在显著差异;陈文斌等(2017)研究表明,生物絮团中的功能菌株不仅能高效降解水体TAN和NO2?-N,还可抑制部分致病弧菌的生长,显著提高对虾的生长发育、免疫防御能力及饲料利用率。
4 结论
科学运用生物絮团技术对养殖水质进行原位调控,可实现凡纳滨对虾高密度零换水的高效健康养殖,还可有效提高水资源的利用效率,有助于推动对虾养殖产业的绿色健康发展。
参考文献:
曹伏龙,夏丽华,郭治兴,冯海媛. 2015. 海水养殖污染研究进展[J]. 广东农业科学,42(22):97-105. [Cao F L,Xia L H,Guo Z X,Feng H Y. 2015. Advances in mariculture contamination[J]. Guangdong Agricultural Sciences,42(22):97-105.]
曹煜成,李卓佳,贾晓平,文国樑,李纯厚. 2006. 对虾工厂化养殖的系统结构[J]. 南方水产,2(3):72-76. [Cao Y C,Li Z J,Jia X P,Wen G L,Li C H. 2006. System configuration of industrial shrimp farming[J]. South China Fisheries Science,2(3):72-76.]
陈文斌,潘鲁青,黄飞. 2017. 对虾生物絮团中亚硝态氮降解菌分离鉴定与安全性评价[J]. 海洋湖沼通报,(3):121-129. [Chen W B,Pan L Q,Huang F. 2017. Isolation,identification and safety evaluation of efficient nitrite-N degradation strain from biofloc-based shrimp culture ponds[J]. Transactions of Oceanology and Limnology,(3):121-129.]
陳旭良,蔡靖,郑平,周尚兴,丁革胜. 2006. 硝化系统碱度特征与调控对策的研究[J]. 浙江大学学报(农业与生命科学版),32(3):318-322. [Chen X L,Cai J,Zheng P,Zhou S X,Ding G S. 2006. Alkalinity characteristics and control strategy in nitrification system[J]. Journal of Zhejiang University(Agriculture & Life Sciences),32(3):318-322.]
邓吉朋,黄建华,江世贵,李涛,杨其彬,周发林,邱丽华. 2014. 生物絮团在斑节对虾养殖系统中的形成条件及作用效果[J]. 南方水产科学,10(3):29-37. [Deng J P,Huang J H,Jiang S G,Li T,Yang Q B,Zhou F L,Qiu L H. 2014. Conditions for bio-floc formation and its effects on Penaeus monodon culture system[J]. South China Fishe-ries Science,10(3):29-37.] 邓应能,赵培,孙运忠,杨丛海,黄倢. 2012. 生物絮团在凡纳滨对虾封闭养殖试验中的形成条件及作用效果[J]. 渔业科学进展,33(2):69-75. [Deng Y N,Zhao P,Sun Y Z,Yang C H,Huang J. 2012. Conditions for bio-floc formation and its effects in closed culture system of Litopenaeus vannamei[J]. Progress in Fishery Sciences,33(2):69-75.]
李奕雯,徐武杰. 2016. 生物絮团零换水养虾模式[J]. 海洋与渔业,(1):46-47. [Li Y W,Xu W J. 2016. Biofloc-based zero water exchange shrimp culture model[J]. Ocean and Fishery,(1):46-47.]
李晓梅,郭体环. 2017. 生物絮团对凡纳滨对虾养殖过程中氨氮和亚硝酸氮含量的影响[J]. 渔业研究,39(4):283-286. [Li X M,Guo T H. 2017. Impact of biological floc on ammonia nitrogen and nitrite nitrogen content in the process of Litopenaeus vannamei culture[J]. Journal of Fishe-ries Research,39(4):283-286.]
刘晃,张宇雷,吴凡,倪琦,徐皓. 2009. 美国工厂化循环水养殖系统研究[J]. 农业开发与装备,(5):10-13. [Liu H,Zhang Y L,Wu F,Ni Q,Xu H. 2009. Study on recircula-ting aquaculture systems in USA[J]. Agricultural Deve-lopment and Equipments,(5):10-13.]
刘鹰,杨红生,刘石林,游奎,张福绥. 2005. 封闭循环系统对虾合理养殖密度的试验研究[J]. 农业工程学报,21(6):122-125. [Liu Y,Yang H S,Liu S L,You K,Zhang F S. 2005. Experimental study on the appropriate breeding density for the production of prawn in closed-recirculating system[J]. Transactions of the Chinese Society of Agricultural Engineering,21(6):122-125.]
羅亮,徐奇友,赵志刚,祖岫杰,闫有利,缴建华. 2013. 基于生物絮团技术的碳源添加对池塘养殖水质的影响[J]. 渔业现代化,40(3):19-24. [Luo L,Xu Q Y,Zhao Z G,Zu X J,Yan Y L,Jiao J H. 2013. Effect of the adding of carbon resource on water quality of pond aquaculture in bio-flocs technology[J]. Fishery Modernization,40(3):19-24.]
孟庆武,王圣,赵玉洁,朱建峰. 2008. 我国对虾工厂化养殖的特点、发展趋势及前景[J]. 海洋开发与管理,25(3):124-127. [Meng Q W,Wang S,Zhao Y J,Zhu J F. 2008. Characteristics, development trends and prospects of industrialized shrimp farming in China[J]. Ocean Development and Management,25(3):124-127.]
宿墨. 2017. 我国水产养殖产业供给侧改革的思考——推广工厂化循环水养殖技术的机遇与动力[J]. 中国水产,(1):40-44. [Su M. 2017. Reflections on the supply-side reform of aquaculture industry in China—Opportunities and motivation for promoting industrial recycling aquaculture technology[J]. China Fisheries,(1):40-44.]
孙振,王秀华,黄倢. 2013. 一种微生物絮团的生化分析及其对凡纳滨对虾免疫力的影响[J]. 水产学报,37(3):473-480. [Sun Z,Wang X H,Huang J. 2013. The biochemical analysis of a microbial floc and its effect on the immunity of Litopenaeus vannamei[J]. Journal of Fisheries of China,37(3):473-480.]
索建杰,王玉玮,姜玉声,李晓东,司永国,刘谞,吴俊,孙娜. 2015. 三种凡纳滨对虾养殖模式的水质特征及养殖效果[J]. 水产学杂志,28(5):12-17. [Suo J J,Wang Y W,Jiang Y S,Li X D,Si Y G,Liu X,Wu J,Sun N. 2015. Characterization of water quality and growth performance of pacific white leg shrimp Litopenaeus vannamei reared in three culture systems[J]. Chinese Journal of Fis-heries,28(5):12-17.] 万国强,陈文斌,潘鲁青. 2015. 不同C/N对生物絮团形成和凡纳滨对虾生长、养殖效果的影响[J]. 齐鲁渔业,32(9):1-4. [Wan G Q,Chen W B,Pan L Q. 2015. Effects of different C/N ratios on bioflocculation and growth and culture of Litopenaeus vannamei[J]. Shandong Fisheries,32(9):1-4.]
王大鹏,何安尤,韩耀全,施军,陈晓汉. 2014. 碱度调节对凡纳滨对虾室内高密度养殖固定化微生物处理效果的影响[J]. 中国水产科学,21(2):330-339. [Wang D P,He A Y,Han Y Q,Shi J,Chen X H. 2014. Alkalinity-regula-ting effect of immobilized microorganisms on indoor high-density culture of Litopenaeus vannamei[J]. Journal of Fishery Sciences of China,21(2):330-339.]
文国樑,曹煜成,徐煜,胡晓娟,徐武杰,李卓佳. 2015. 养殖对虾肝胰腺坏死综合症研究进展[J]. 广东农业科学,42(11):118-123. [Wen G L,Cao Y C,Xu Y,Hu X J,Xu W J,Li Z J. 2015. Review on hepatopancreas necrosis syndrome of shrimp[J]. Guangdong Agricultural Sciences,42(11):118-123.]
徐纪萍,谈小兰,钱辉仁. 2012. 凡纳滨对虾高密度零换水高产养殖技术[J]. 水产科技情报,39(1):26-29. [Xu J P,Tan X L,Qian H R. 2012. High-density aquaculture technology of Litopenaeus vannamei in the zero-water exchange system[J]. Fisheries Science & Technology Information,39(1):26-29.]
徐如卫,杨福生,俞奇力,陈菲,王亚妮. 2015. 凡纳滨对虾循环水养殖可行性研究[J]. 河北渔业,(3):25-28. [Xu R W,Yang F S,Yu Q L,Chen F,Wang Y N. 2015. Feasibility study on recirculating aquaculture of Litopenaeus vannamei[J]. Hebei Fisheries,(3):25-28.]
杨菁,倪琦,张宇雷,徐宝荣. 2010. 对虾工程化循环水养殖系统构建技术[J]. 农业工程学报,26(8):136-140. [Yang J,Ni Q,Zhang Y L,Xu B R. 2010. Construction technology on RAS for shrimp culture[J]. Transactions of the Chinese Society of Agricultural Engineering,26(8):136-140.]
張庆文,田景波,黄滨,唐贤明. 2002. 对虾封闭循环式综合养殖系统的规划设计[J]. 海洋水产研究,23(4):29-34. [Zhang Q W,Tian J B,Huang B,Tang X M. 2002. The design of experimental base of shrimp in comprehensive culturing and circulating-closed systems[J]. Marine Fishe-ries Research,23(4):29-34.]
赵大虎,潘鲁青,王超. 2014. 生物絮团对养殖环境的清洁作用及对虾生理指标的影响[J]. 海洋湖沼通报,(1):67-73. [Zhao D H,Pan L Q,Wang C. 2014. Effects of biofloc on the breeding environment cleanings and shrimp physiological indicators[J]. Transactions of Oceanology and Limnology,(1):67-73.]
郑春华,耿安锋,李金国. 2017. 碱度对生物脱氮工艺的影响及其调控[J]. 中国给水排水,33(10):34-36. [Zheng C H,Geng A F,Li J G. 2017. Role and control of alkalinity in the process for biological nitrogen removal[J]. China Water & Wastewater,33(10):34-36.]
Abreu P C,Ballester E L C,Odebrecht C,Jr W W,Cavalli R O,Graneli W,Anesio A M. 2007. Importance of biofilm as food source for shrimp(Farfantepenaeus paulensis) eva-luated by stable isotopes(δ13C and δ15N)[J]. Journal of Experimental Marine Biology and Ecology,347(1-2):88-96. Avnimelech Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems[J]. Aquaculture,176(3-4):227-235.
Avnimelech Y. 2015. Biofloc technology-A practical guide book[M]. The 3rd Edition. Baton Rouge:The World Aquaculture Society.
Azim M E,Little D C. 2008. The biofloc technology(BFT) in indoor tanks:Water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J]. Aquaculture,283(1-4):29-35.
Cao Y C,Wen G L,Li Z J,Liu X Z,Hu X J,Zhang J S,He J G. 2014. The effects of dominant microalgae species and bacterial quantity on shrimp production in final culture season[J]. Journal of Applied Phycology,26(4):1749-1757.
Cardona E,Gueguen Y,Magré K,Lorgeoux B,Piquemal D,Pierrat F,Noguier F,Saulnier D. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system[J]. BMC Microbiology,16:157.
Crab R,Avnimelech Y,Defoirdt T,Bossier P,Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production[J]. Aquaculture,270(1-4):1-14.
Deb S,Noori M T,Rao S P. 2017. Experimental study to eva-luate the efficacy of locally available waste carbon sources on aquaculture water quality management using biofloc technology[J]. Aquaculture International,25(6):2149-2159.
Epp M A,Ziemann D A,Schell D M. 2002. Carbon and nitrogen dynamics in zero-water exchange shrimp culture as indicated by stable isotope tracers[J]. Aquaculture Research,33(11):839-846.
Furtado P S,Campos B R,Serra F P,Klosterhoff M,Romano L A,Jr W W. 2015. Effects of nitrate toxicity in the Paci-fic white shrimp,Litopenaeus vannamei, reared with biofloc technology(BFT)[J]. Aquaculture International,23(1):315-327.
Hari B,Kurup M B,Varghese J T,Schrama J W,Verdegem M C J. 2006. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems[J]. Aquaculture,252(2-4):248-263.
Maciel J C,Francisco C J,Miranda-Filho K C. 2018. Compensatory growth and feed restriction in marine shrimp production,with emphasis on biofloc technology[J]. Aquaculture International,26(1):203-212.
Rego M A S,Sabbag O J,Soares R,Peixoto S. 2017. Risk analysis of the insertion of biofloc technology in a marine shrimp Litopenaeus vannamei production in a farm in Pernambuco,Brazil:A case study[J]. Aquaculture,469:67-71.
Reid B,Arnold C R. 1992. The intensive culture of the penaeid shrimp Penaeus vannamei boone in a recirculating raceway system[J]. Journal of the World Aquaculture Society,23(2):146-153. Sajali U S B A,Atkinson N L,Desbois A P,Little D C,Murray F J,Shinn A P. 2019. Prophylactic properties of biofloc or Nile tilapia-conditioned water against Vibrio parahaemolyticus infection of whiteleg shrimp(Penaeus vannamei)[J]. Aquaculture,498:496-502.
Suita S M,Cardozo A P,Romano L A,Abreu P C,Jr W W. 2015. Development of the hepatopancreas and quality analysis of post-larvae Pacific white shrimp Litopenaeus vannamei produced in a BFT system[J]. Aquaculture International,23(2):449-463.
Timmons M B,Ebeling J M. 2006. The role for recirculating aquaculture systems(RAS).I.[J]. Aquaculture Magazine,32(3):26-31.
Verschuere L,Rombaut G,Sorgeloos P,Verstraete W. 2000. Probiotic bacteria as biological control agents in aquaculture[J]. Microbiology and Molecular Biology Reviews,64(4):655-671.
Xu W J,Pan L Q. 2012. Effects of bioflocs on growth performance,digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed[J]. Aquaculture,356-357:147-152.
Xu W J,Pan L Q. 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input[J]. Aquaculture,412-413:117-124.
Xu W J,Pan L Q. 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei:Evaluation of inorganic nitrogen control,biofloc composition and shrimp performance[J]. Aquaculture Research,45(11):1842-1851.
Xu W J,Pan L Q,Sun X H,Huang J. 2013. Effects of bioflocs on water quality,and survival,growth and digestive enzyme activities of Litopenaeus vannamei(Boone) in zero-water exchange culture tanks[J]. Aquaculture Research,44(7):1093-1102.
Xu W J,Morris T C,Samocha T M. 2016. Effects of C/N ratio on biofloc development,water quality,and performance of Litopenaeus vannamei juveniles in a biofloc-based,high-density,zero-exchange,outdoor tank system[J]. Aquaculture,453:169-175.
Zhao P,Huang J,Wang X H,Song X L,Yang C H,Zhang X G,Wang G C. 2012. The application of bioflocs technology in high-intensive,zero exchange farming systems of Marsupenaeus japonicas[J]. Aquaculture,354-355:97-106.
(責任编辑 兰宗宝)