论文部分内容阅读
随着个人消费贷款的普及,贷款人的个人信用评估变得尤为重要。本文选取德国和澳大利亚某商业银行的个人信贷数据为样本数据,采用主成分分析提取样本数据的主成分,通过遗传算法优化神经网络的网络结构、初始连接权值和阀值,然后将优化的神经网络算法用于个人信用评估。与其他算法的准确率比较的结果表明,基于主成分分析-遗传算法-神经网络算法的个人信用评估准确率要高,而且模型的网络结构得到优化,运算时间也有缩短。