论文部分内容阅读
石墨烯发现者之一、英国曼彻斯特大学教授安德烈·海姆不久前向公众讲述自己获得2010年诺贝尔物理学奖之后,仍投入90%的时间在实验室做基础研究的情况。他演讲所迸发的创新思维,令人耳目一新、脑洞大开。
长期以来,人们对二维结构的晶体了解不多。二维晶体以平面形式存在,犹如将三维晶体减薄至一个原子层厚。传统理论认为,准二维晶体结构因其热力学的不稳定性在自然界中根本不可能找到。直到2004年,安德烈·海姆与其同事康斯坦丁·诺沃肖洛夫首次从高定向热解石墨上成功分离出单层石墨片——石墨烯,用事实证明二维材料可在常温常压下稳定存在。
可以说,石墨烯的发现开启了二维材料的世界之门。海姆指出:“石墨烯并非独一无二的二维材料,还有很多二维材料具有特殊性能,可能在某一些应用中表现更好。
而对石墨烯而言,研究人员可在其原子层上做各种拼接,仿佛儿童在玩乐高积木。由此,石墨烯可作为组成其他碳材料的结构基础。
海姆指出:“把石墨烯与其他材料进行人为整合,花费几周时间将原子搭配设计出一个复杂的结构,会让石墨烯更加有‘魔力’,并在此基础上对这些物质的不同特性展开深入研究。这类研究成果可称为石墨烯3.0。”
当然,目前石墨烯复合材料的研究还面临许多问题和挑战,如石墨烯与无机纳米颗粒的相互作用机理、与高聚物的相容性、复合材料应用的拓展与深入等,仍亟待进一步深入研究。
在制备石墨烯时,人们往往把注意力集中在石墨烯上,而海姆团队却不放过研究剥离单层石墨烯后通常被丢弃的材料。
海姆说:“放大剩下的石墨块晶体是一个二维真空区,里面有许多像超细毛细管的结构形状,约有15纳米。当我们对其做水的运输测试时惊奇地发现,水流通过这种超窄毛细管时,几乎无障碍和没有摩擦,达到1米/秒的流速,而且管壁非常平滑,水的滑移距离比较长。”
海姆团队解释说,这是一种全新的纳米尺度系统,其毛细管道的精密度无法想像。更重要的是,这些超微毛细管可制备多种材料,不仅可以控制毛细管尺寸,还可调变毛细管壁的性能。这些材料未来有望用于新型过滤、海水淡化和气体分离技术等领域。
海姆补充道:“在石墨烯基础研究中很多的科学发现让人吃惊,而让新发现的材料变得有用是非常酷的,其中将有无数个研究和开发的可能性有待探索。这样的研究深深地影响到我们。”
无疑,石墨烯的发现为研究者提供了一个充满魅力和想象空间的研究对象,而跟着“石墨烯之父”学习如何做基础研究,可谓不断刷新着创新视野。相信不久的将来,“多面手”的石墨烯定会在很多领域带来颠覆性的变革。
长期以来,人们对二维结构的晶体了解不多。二维晶体以平面形式存在,犹如将三维晶体减薄至一个原子层厚。传统理论认为,准二维晶体结构因其热力学的不稳定性在自然界中根本不可能找到。直到2004年,安德烈·海姆与其同事康斯坦丁·诺沃肖洛夫首次从高定向热解石墨上成功分离出单层石墨片——石墨烯,用事实证明二维材料可在常温常压下稳定存在。
可以说,石墨烯的发现开启了二维材料的世界之门。海姆指出:“石墨烯并非独一无二的二维材料,还有很多二维材料具有特殊性能,可能在某一些应用中表现更好。
而对石墨烯而言,研究人员可在其原子层上做各种拼接,仿佛儿童在玩乐高积木。由此,石墨烯可作为组成其他碳材料的结构基础。
海姆指出:“把石墨烯与其他材料进行人为整合,花费几周时间将原子搭配设计出一个复杂的结构,会让石墨烯更加有‘魔力’,并在此基础上对这些物质的不同特性展开深入研究。这类研究成果可称为石墨烯3.0。”
当然,目前石墨烯复合材料的研究还面临许多问题和挑战,如石墨烯与无机纳米颗粒的相互作用机理、与高聚物的相容性、复合材料应用的拓展与深入等,仍亟待进一步深入研究。
在制备石墨烯时,人们往往把注意力集中在石墨烯上,而海姆团队却不放过研究剥离单层石墨烯后通常被丢弃的材料。
海姆说:“放大剩下的石墨块晶体是一个二维真空区,里面有许多像超细毛细管的结构形状,约有15纳米。当我们对其做水的运输测试时惊奇地发现,水流通过这种超窄毛细管时,几乎无障碍和没有摩擦,达到1米/秒的流速,而且管壁非常平滑,水的滑移距离比较长。”
海姆团队解释说,这是一种全新的纳米尺度系统,其毛细管道的精密度无法想像。更重要的是,这些超微毛细管可制备多种材料,不仅可以控制毛细管尺寸,还可调变毛细管壁的性能。这些材料未来有望用于新型过滤、海水淡化和气体分离技术等领域。
海姆补充道:“在石墨烯基础研究中很多的科学发现让人吃惊,而让新发现的材料变得有用是非常酷的,其中将有无数个研究和开发的可能性有待探索。这样的研究深深地影响到我们。”
无疑,石墨烯的发现为研究者提供了一个充满魅力和想象空间的研究对象,而跟着“石墨烯之父”学习如何做基础研究,可谓不断刷新着创新视野。相信不久的将来,“多面手”的石墨烯定会在很多领域带来颠覆性的变革。