论文部分内容阅读
随着最近深度学习技术的蓬勃发展,深度神经网络(DNN)在大规模的图像分类与识别任务中取得了突破性的进展,但其在解决小样本学习问题时仍面临巨大挑战。小样本学习(FSL)是指在少量有监督样本的情况下学习一个能解决实际问题的模型,在深度学习领域具有重要意义。这促使该系统梳理了已有的DNN下的小样本学习工作,根据它们在解决小样本学习问题时所采用的技术,将DNN下的小样本学习解决方案分为四种策略:数据增强、度量学习、外部记忆、参数优化。根据这些策略,对现有的DNN下的小样本学习方法进行了全面的综述,同时总结了