论文部分内容阅读
针对标准粒子群优化算法搜索精度不高、易陷入局部最优的问题,提出了一种带扰动因子的自适应粒子群优化算法。该算法进行混沌初始化,采用自适应的惯性权重,并将扰动因子加入粒子个体极值、全局极值和位置更新公式中。通过与其它算法的数值实验对比,新算法能够有效避免局部最优,全局收敛性能显著提高,收敛速度更快。