论文部分内容阅读
将深度神经网络作为声学模型引入面向汉语电话自然口语交谈语音识别系统。针对自然口语中识别字错误率较高的问题,从语音的声学特征类型选择、模型训练时元参数调节以及改善模型泛化能力等方面出发,对基于深度神经网络的声学模型建模技术进行了一系列的优化。针对训练样本中状态先验概率分布稀疏的情况,提出了一种状态先验概率平滑算法,在一定程度上缓解了这种数据稀疏问题,经平滑后,字错误率下降超过1%。在所采用的3个电话自然口语交谈测试集上,相对于优化前的深度神经网络模型,经过优化后的模型取得了性能的一致提升,字错误率平均