论文部分内容阅读
由于单一神经网络建立的软件可靠性预测模型的预测精度不高且适用性差,用高级神经网络建立的软件可靠性预测模型的网络结构过于复杂。为了提高软件可靠性预测模型的适用性和在保证预测精度的情况下降低神经网络的结构,提出了利用软件缺陷数据,在BP神经网络训练过程中利用萤火虫算法(Firefly algorithm,FA)对BP神经网络的权值和阈值进行寻优,同时采用多次预测结果取均值的方式来减小BP神经网络预测的波动性的方法来建立基于FABP的软件可靠性预测模型。利用3组软件缺陷数据,以误差比均值和误差平方和作为衡