论文部分内容阅读
The delayed-state-derivative feedback (DSDF) is introduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accelerate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introducing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles, this paper proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDF. Simulations are provided to demonstrate the effectiveness of the theoretical results.
The delayed-state-derivative feedback (DSDF) is introduced into the existing consensus protocol to simultaneously improve the robustness to communication delay and accelerate the convergence speed of achieving the consensus. The frequency-domain analysis, together with the algebra graph the- ory, is employed to derive the sufficient and necessary condition guaranteeing the average consensus. It is shown that introducing the DSDF with the proper intensity in the existing consensus protocol can improve the robustness to communication delay. By analyzing the effect of DSDF on the closed-loop poles this paper proves that for a supercritical-delay multi-agent system, this strategy can also accelerate the convergence speed of achieving the consensus with provided the proper intensity of the DSDF. Simulations are provided to demonstrate the effectiveness of the theoretical results.