论文部分内容阅读
本文主要以化工过程预报为研究目标,提出了最优模糊聚类神经网络系统模型(FCNNS).该模型有下列突出优点:数据首先利用模糊聚类算法对原始数据进行提取优化,然后将优化数据送入模糊系统进行学习产生模糊规则;优化规则数和优化隶属函数的参数,最终达到模糊聚类神经网络系统模型的最优化.该模型不但可以缩短规则生成的时间,有效的防止了规则数爆炸,而且在化工过程预报的应用中获得理想的结果.