论文部分内容阅读
根据南京炼油厂制氢车间的生产数据,用人工神经网络(ANN)的反向传播(BP)算法对制氢装置转化生产中的水碳比进行预测.提出了适宜的人工神经网络拓扑结构,讨论了BP算法中学习速率、动量系数及过拟合现象对网络的影响,通过生产数据的检验表明,ANN方法能准确地关联和预报制氢装置转化生产中的水碳比,水碳比预测平均相对误差为2.83%.