论文部分内容阅读
单变量决策树难以反映信息系统属性间的关联作用,构造的决策树往往规模较大。多变量决策树能较好地反映属性间的关系,得到非常简单的决策树,但使构造的决策树难以理解。针对以上两种决策树特点,提出了基于知识粗糙度的混合变量决策树的构造方法,选择知识粗糙度较小的分类属性来构造决策树。实验结果表明,这是一种操作简单、效率很高的决策树生成方法。