论文部分内容阅读
谱聚类分割方法的结果很大程度上受超像素分类聚合效果的影响,而超像素分类聚合的效果关键在于超像素之间的相似性模型。基于双分图的分割框架利用交叉相似性矩阵可以高效完成超像素分类聚合,但其相似性模型采用简单的颜色特征,对强光照射、遮蔽等光照变化不具有鲁棒性,影响目标分割的精度。为了提高超像素聚合的一致性,文章提出利用具有颜色不变特征的颜色描述子和能够反映物理表面反射变化的Ridge特征来构建交叉相似性模型。在Berkeley分割数据集中的实验验证,基于颜色不变特征的谱聚类分割方法获得了比已有分割算法更好的效果。