基于蚁群优化算法的弱光图像显著性目标检测

来源 :计算机应用 | 被引量 : 0次 | 上传用户:chsmfzh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,显著性目标检测受到工业界和学术界的大量关注,成为了计算机视觉领域中一项重要的基础研究,该问题的解决有助于各类视觉任务取得突破性进展。尽管针对可见光场景的显著性检测工作已经取得了有效成果,但如何在信噪比偏低、可用有效信息匮乏的弱光图像中提取边界清晰、内部结构准确的显著性目标,仍然是具有挑战性的难题。针对弱光场景下显著性目标检测存在边界模糊、结构不完整等造成准确率较低的问题,提出基于蚁群优化(ACO)算法的显著性检测模型。首先,通过多尺度超像素分割将输入图像转换为具有不同节点的无向图;其次,基于
其他文献
针对拥有双向航道的集装箱港口中船舶进出港所遇到的会遇和追越等问题,提出了一种重点考虑服务规则的新型船舶调度优化算法。首先,同时考虑双向航道的现实约束和港口夜航的安全规定;然后,构建了以所有船舶在港总等待时间最小为目标的混合整数规划模型来得出最佳的船舶进出港次序;最后,设计了嵌入聚合策略的分支切割算法对模型进行求解。通过数值实验可知,运用嵌入聚合策略的分支切割算法所得结果与下界值的平均相对偏差为2.