论文部分内容阅读
近年来,显著性目标检测受到工业界和学术界的大量关注,成为了计算机视觉领域中一项重要的基础研究,该问题的解决有助于各类视觉任务取得突破性进展。尽管针对可见光场景的显著性检测工作已经取得了有效成果,但如何在信噪比偏低、可用有效信息匮乏的弱光图像中提取边界清晰、内部结构准确的显著性目标,仍然是具有挑战性的难题。针对弱光场景下显著性目标检测存在边界模糊、结构不完整等造成准确率较低的问题,提出基于蚁群优化(ACO)算法的显著性检测模型。首先,通过多尺度超像素分割将输入图像转换为具有不同节点的无向图;其次,基于