论文部分内容阅读
针对传统的Gabor无法兼顾识别率与实时性的缺点,提出了一种融合Gabor、LBP、LPQ三种特征的表情识别算法。首先采用Gabor变换提取人脸图像的边缘信息,根据获得的变换表征结果,提取其LBP特征及LPQ特征;通过PCA算法对提取的特征进行降维,并对降维后的LBP特征及LPQ特征进行直方图操作;最后,设计基于ELM神经网络面部表情分类器。应用JAFFE人脸表情数据库的测试结果表明,该方法比传统方法具有更高的识别准确度和更快的识别速度。