基于Caputo分数阶导数的含时滞的非保守系统动力学的Noether对称性

来源 :中山大学学报:自然科学版 | 被引量 : 0次 | 上传用户:tianxia108
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出并研究基于Caputo分数阶导数的含时滞的力学系统的Noether对称性与守恒量。建立了含时滞的非保守系统的分数阶运动微分方程;根据系统的含时滞的分数阶Hamilton作用量在无限小群变换下的泛函不变性,给出了含时滞的分数阶Noether对称变换,Noether准对称变换以及Noether广义准对称变换的定义判据;研究了含时滞的分数阶Noether对称性与守恒量之间的联系,并举例说明结果的应用。
其他文献
研究空间形式S^n+p(1)中平均曲率与纯量曲率成线性关系的n维紧致闭子流形M^n,所得定理A将有关文献中关于常纯量曲率的子流形的脐性结果推广到了平均曲率与纯量曲率成一般线性关系