论文部分内容阅读
在对高光谱图像进行分类时,由于高光谱数据维度很高,通常先对其进行特征选择,进而使用分类器进行分类。在分类时,最大似然分类器因为具有多分类、概率输出等特点而经常被采用。在实际分类中,我们发现,目标的真实类别所获得的概率值通常位于所有类别的前两位,我们称该现象为混淆现象。利用这一现象,通过特征重选择,我们给出一种新颖的特征选择框架。该框架首先对数据进行特征选择,进而对目标进行分类。若分类结果满足混淆条件,则针对易混淆的两类进行特征重选择,分类并得到最终结果。理论分析和实验结果表明,该框架稳定、有效。