论文部分内容阅读
针对临近空间高超声速目标高度非线性、强耦合、高机动、时变参数、和独特气动特性等特点,综合运用军事运筹学理论与方法、系统建模技术、神经网络技术以及计算机仿真等,提出基于神经网络校正的扩展卡尔曼滤波(EKF)算法,并在高超声速目标跟踪中进行了应用研究。采取神经网络的学习能力来克服卡尔曼滤波发散问题,通过卡尔曼滤波后加一级误差处理环节使滤波收敛。仿真结果表明:该算法在目标发生较大机动时仍能保持较高的跟踪精度。