论文部分内容阅读
为了提高植物叶片识别与分类的正确率,提出了基于SVM的识别模型和方法;对叶片图像预处理后,提取并优选10个叶片形状特征参数,用SVM法进行训练建模并识别。实验结果表明,用线性核函数的SVM对木瓜、女贞、三角枫和五角枫4种植物叶片识别的平均准确率在95.8%以上,优于神经网络和Fisher判别法,为鉴定植物种类提供了一种快速有效的方法。