The Zeros and Nevanlinna Deficiencies for Some q-Shift Difference Differential Polynomials of Meromo

来源 :数学研究及应用 | 被引量 : 0次 | 上传用户:xboy123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The first purpose of this paper is to study the properties on some q-shift difference differential polynomials of meromorphic functions,some theorems about the zeros of some q-shift difference-differential polynomials with more general forms are obtained.The second purpose of this paper is to investigate the properties on the Nevanlinna deficiencies for q-shift differ-ence differential monomials of meromorphic functions,we obtain some relations among δ(∞,f),δ(∞,f\'),δ(∞,f(z)nf(qz + c)mf\'(z)),δ(∞,f(qz + c)mf\'(z)) and δ(∞,f(z)nf(qz + c)m).
其他文献
我们在穿孔单位球上研究下面多重调和Dirichlet问题{(-Δ)ku=f(u),在B\\{0)内,u>0,在B\\{0)内,u=(e)u/(e)v=…=(e)k-1u/(e)vk-1=0,在(e)B上,其中,B是RN中的单位球,v是(e)B的单位外法向量,N>2k,k≥2.在f满足适当假设条件下,如果0是不可去奇点,我们利用移动平面法得到奇异正解的径向对称性.由此,我们可以得到临界双调和Dirichlet问题正解的不存在性.
本文研究了Hilbert空间上斜对角2×2分块有界算子矩阵(A)=[0BC0]的二次数值半径不等式,应用非负实数的经典凸性不等式推广了(A)的二次数值半径不等式.
设Z,N分别是全体整数和正整数的集合,Mm(Z)表示Z上m阶方阵的集合.本文运用Fermat大定理的结果证明了:对于取定的次数n∈N,n≥3,二阶矩阵方程Xn+Yn=λnI(λ∈Z,λ≠0,X,Y∈M2(Z),且X有一个特征值为有理数)只有平凡解;利用本原素因子的结果得到二阶矩阵方程Xn+Yn=(±1)nI(n∈N,n≥3,X,Y∈M2(Z))有非平凡解当且仅当n=4或gcd(n,6)=1且给出了全部非平凡解;通过构造整数矩阵的方法,证明了下面的矩阵方程有无穷多组非平凡解:(V)n∈N,Xn+ Yn=λn
设H是无限维复Hilbert空间,B(H)表示H上的有界线性算子全体构成的集合.本文对B(H)中使得f(T)满足Weyl定理的算子进行刻画,其中f是T的谱集的某个邻域上的解析函数.同时,也对算子函数的Weyl定理及算子Weyl定理的摄动之间的关系进行了讨论.
Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H.An operator A is called the truncation of B in B(H) if A =PABPA*,where PA and PA* denote projections onto the closures of R(A) and R(A*),respectively.In this paper,
期刊
In this paper,we propose a new class of non-self mappings called p-proximal α-η-β-quasi contraction,and introduce the concepts of α-proximal admissible mapping with respect to η and (α,d) regular mapping with respect to η.Based on these new notions,we stu
By combined power evolution laws of the spectral parameter and the initial constants of integration,a new differential-difference hierarchy is presented from the Toda spectral problem.The hierarchy contains the classic Toda lattice equation,the nonisospec
期刊
在自仿测度谱与非谱问题的研究中,由两元素数字集确定的迭代函数系是最简单且最重要的情形.一维情况对应Bernoulli卷积,其谱与非谱问题是已知的,而高维尤其是二维情形还未完全确定.有猜想表明:平面中遗留的情形均对应于非谱自仿测度.针对这种情况,本文首先获得了判定两元素数字集所对应平面自仿测度非谱性的一类条件,并在一种条件下得到正交指数函数系中元素个数的最佳上界.其次给出了所得结果的应用,并举例说明了该类条件的有效性.