论文部分内容阅读
为了研究主元分析故障诊断模型在非线性时变过程中应用的局限性和降低基于非线性主元分析的过程监控方法的计算复杂度,将核变换理论引入非线性空间的数据特征提取中,提出了一种基于核主元分析(KPCA)恒定值检测的故障监测模型.该模型通过恰当的选取核函数的参数值,达到对过程故障的恒定值检测,而且与其它非线性算法相比计算复杂度低.通过啤酒发酵过程的故障检测实验验证了该方法能够及时地检测出过程故障,对缓慢时变的间歇过程具有实时性和准确性.