论文部分内容阅读
支持向量机表情识别的准确率和时间消耗取决于核函数选取和特征数目。该文讨论了支持向量机的表情分类和核函数的实验方法,并进一步探讨了核和特征数目与识别准确率和时间消耗的关系。基于JAFFE数据库和LibSVM2.86的实验表明,随着特征数目的增加,训练时间呈指数增长,交叉验证准确率先增加后降低,表现为某种单峰分布。同时表明,线性核时间消耗最小,径向基核在特征数目较小时,具有最好的识别率,而在特征数目较大时,线性核最优。综合时间和识别率考虑,在低维时,优先选用径向基核,高维优先选用线性核。